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Preface

The computer could not have progressed past the stage of being merely
the plaything of the scientist if it had not been for Von Neumann’s stored
program concept and the consequent emancipation of the programmer from
the toil of machine language programming by the development of higher
level languages. In one short decade the science of computing has moved
from the mystic world of backroom boffery to an ivory tower of free
thought, wherein no one prospective user is forbidden to think or speak in
the same monotones as the computer. Yet, with all the effort expended on
the part of the manufacturers to produce languages which are easier to
learn and use, the virulent and verbose user has always demanded more,
so that we are now tending to develop more complex languages, acceptable
to the old hand but incomprehensible to the newcomer.

Similarly, although the family of translators has been in existence for a
considerable time (with respect to the age of the computer), the techniques
of translation have been hidden in the tomes of technical obscurity. Inger-
man,’ in his own preface, commented that the available literature was
“vague, obfuscatory and hubistic.”

This text attempts to lift a portion of the veil of secrecy from compiler
writing, though by no means can it be considered a “state of the art”
manual. Rather, the author intends to show that, with some thought, the
task of compiler writing is little more than that required to write an over-
size program for the solution of a problem in a field foreign to the im-
plementer. In fact, since the art of compiler writing is not yet a subject for
study in a liberal arts course, it may forever remain the property of the
specialized few.

t P. Z. Ingerman, 4 Syntax Oriented Translator, Academic Press, New York, 1966.
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PREFACE

Yet today, the specialized few are the self-taught masters of the com-
puting fraternity, who, recognizing their own shortcomings, continually
grasp at the yet unobtainable. Using this book as the text for a course in
compiler writing, it is the author’s hope to short circuit the learning process
of the prospective compiler writer and so to give him the opportunity, far
earlier in his career than his predecessors, to beat against the barriers of
our self-accrued knowledge and to extend the capabilities of the computer
to newer linguistic levels.

There has been a tendency over the past few years to formalize the
“theory” of compiler design. In particular, there has been developed a
field of study concerned with the formal definition of computer languages
both with respect to the syntax of the languages and the semantics of the
source languages. Alongside these developments there has grown a set of
programs which will accept these formal definitions as descriptors of a
language, so that any source language may be converted to any desired
target language. However, although formal syntax rules have been accepted
as a standard means of language definition, the semantic definitions of
language are still subject to criticism as being either machine dependent
(even if the machine is hypothetical) or not susceptible to machine input.
Further, since semantic definition must eventually describe the relationship
between the source language and the target language, it is necessary that
the author of the semantic definition be thoroughly conversant with the
techniques of representing the procedures of the source language in the
target language.

Based on these observations, this text describes the formal definition of
syntax and the consequent syntactical analysis of input strings as well as
the techniques of syntactical analysis which are peculiar to one language.
Formal semantic definition has been omitted since no standard acceptable
method of representation exists. Instead, the various compiler generators
and routines are described, relating the source language to the target lan-
guage in a less formal manner.

For the purposes of example, FORTRAN has been chosen as the basis
for discussion. Each chapter describing the generators also discusses some
extensions to the FORTRAN language which can easily be added to most
systems and which incorporate many of the special features of other
languages. The author regards these embellishments of FORTRAN as
natural extensions of the language and not frills added for the sake of “frill
mongering.”
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Introduction

To the novice, kneeling at the footstool of the all-powerful program-

ming instructor, the computer is sufficiently complex that he cannot
begin to understand the even greater complexities of the compiler. Even
yet, the experienced programmer, having written his program in some high-
level language, goes to bed each night, satisfied that both the computer
and the compiler performed their tasks with an exactitude that could not
be expected of him. He does not stop to wonder at the products of many
man-years of effort that have culminated in his ability to do his own work
devoid of the frustrations of bits, bytes and binits. Yet let him take care,
for even if one electron fails to find its right path home, he will curse
every man-minute until he is proven exemplary.

Confronted with another machine of our age, the automobile, his per-
sonality undergoes a radical change, for having been exposed to the opera-
tion of an internal combustion engine, he is sensitive to every rattle. At the
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INTRODUCTION

first sign of trouble, he confronts the garage mechanic with a barrage of
constructive suggestions as to the probable cause of the trouble, knowing
full well that given the time, tools and parts, he could fix it himself.

In the same manner, this text will allow the programmer to move from
the stage of merely being the “driver” to a state of understanding where he
can be a diagnostician, a fiddler or even an implementer. To this end, let
us therefore review some of the concepts in computer language translation.

Translators

The mention of computer translation to the noncomputer person often
leads to the thought of natural language translation, whereas, in fact, most
of the work performed within a computer is a form of translation. That is,
if we will accept the definitions :

translate, v.t., . . ... to transform; to render into another language; to
explain by using other words; . . . .

as being applicable in this context, then the transformation of data by an
algorismic process can be considered a translatory process. Further, since
Hamming # has decreed that:

“The purpose of computing is insight, not numbers”

then the computer is an explanation machine. However, by general usage
in “computerese,” translator is the generic term for computer programs
that accept as input a nonnatural computer language and output some
other nonnatural computer language. Only when modified by certain adjec-
tives, may the term “‘translator” refer to any more specific system. Thus we
shall encounter such terms as “syntax-oriented translator” and “natural
language translator.”

In one sense, a cryptographer may be considered a translator; however,
the difference between creating a cipher from a message given the key
(algorithm) and decoding a cipher to a message lacking the key is ex-
tremely great. As an example of the latter, consider the task undertaken
by Legrand, the leading character in Edgar Allan Poe’s The Gold Bug,
who discovers the following cipher:

T From the Webster Modern Reference Dictionary of the English Language, Con-
solidated Book Publ., Chicago, 1964.

¥ R. Hamming, Numerical Analysis for Engineers and Scientists, McGraw-Hill Book
Company, New York, 1964.



TRANSLATORS
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Having decided by other logical reasoning that the author of the cipher
was concealing a message originally written in English, and recognizing
that there were no word delimiters, Legrand made a count of the frequency
of occurrence of the individual characters:

Number of
Character Occurrences

8 33
; 26
4 19
. 16
) 16
* 13
5 12
6 11
T 8
1 8
0 6
9 5
2 5

4
3 4
? 3
q 2
} 1
- 1

1



INTRODUCTION

Now the frequency of occurrence of letters in the English language is
(from highest to lowest) :

eaoidhnrstuycfgvimwbkpqjxz

Observing that the accretion ee occurs often and that a common three char-
acter group is the, Legrand comes to the conclusion that 8 represents e , ;
represents ¢ and 4 stands for 4. After much further rumination based on
the possible character combinations in the English language (such as the
fact that the accretion gg never occurs), the following partial key is
developed:

Character Character
in Cipher in Message
5 a
T d
8 e
3 8
4 h
6 i
* n
* o
( r
; t

Legrand then inserts the other characters in the cipher after further in-
spection and produces an unpunctuated version of the message. Only by
close examination of the actual script and a knowledge of the neighborhood,
does he determine the actual message:

A good glass in the Bishop’s hostel in the Devil's seat—twenty-one
degrees and thirteen minutes—northeast and by north—main branch
seventh limb east side—shoot through the left eye of the death’s head
—a bee line from the tree through the shot fifty feet out.



COMPUTER LANGUAGES

While Sherlock Holmes was no less adept at cryptography ¥ than
Legrand, he was an expert at deduction to the point that the amalgama-
tion of data lead him to some remarkable conclusions. Even this process,
in a sense, can be considered translation, since it is an interpretation of
data leading toward a target, that is, an explanation using different words.

Computer Languages

Since the first Von Neumann computer was built with the essential
feature of a stored program, the problem of communication between man
and machine has been ever present. While the concept of program writing
instead of wiring a plug board seemed, at the time, to be the ultimate
weapon of machine direction, machine language was not even close to
being a final weapon of the computer fraternity when it became apparent
that to learn machine language was equivalent to subjecting oneself to the
rigors of any discipline. Thus only those persons who could spare the time
or who were already involved in the industry made the effort to acquire
this knowledge. From this beginning grew an elite band of experts who
were capable of communicating with the computer.

However, the use of a middleman is always objectionable, and the person
with the problem found that the task of describing the problem and answer-
ing the poorly defined subproblems was far more trouble than actually
solving the problem by hand. Thus the development of problem-solving
languages has been for the benefit of the noncomputer expert and not pri-
marily for the professional programmer.

Continued language development by manufacturers in the competitive
arena has not only meant the evolution of more meaningful communication
systems, but also a diversity of languages that are machine- or, at least,
manufacturer-dependent.

To complicate this situation, specialized languages that are slanted toward
families of problems in certain disciplines have also developed. Thus the
language useful to the civil engineer will be of little use and perhaps even
meaningless to a physicist.

The so-called algorithmic or procedure-oriented languages, such as
ALGOL, FORTRAN and PL/1, were intended to provide a mode of com-
munication akin to normal (as opposed to natural) mathematical nomen-

¥ See The Adventure of the Dancing Men by Sir Arthur Conan Doyle.



INTRODUCTION

clature. However, the restrictions imposed by these languages have con-
fined their use to problems that are well defined in scalar algebra. This
has, in some instances, led to the development of brilliant techniques to
circumvent these shortcomings; however, the effort expended or required
to create the algorisms, by those who are merely trying to solve a problem,
has tended to create the illusion in some minds that the mystic art of
programming is still a land of forbidden territories to the nonprogrammer.

One of the foremost difficulties we have experienced in the use of the
first two generations of computers has been the fact that the computer could
accept only a linearized input medium. Only in the third generation are
we being supplied with input devices capable of accepting a two-dimen-
sional communication. With the development of page-reading devices, en-
abling a communication with the computer in humanly readable form, it
will be possible, eventually, to present a problem definition in terms of the
algorithm printed in a standard text or technical journal, adding to this,
for data, a sketch of the known information. In one instance  such a two-
dimensional input system has been successful. Using a modified flexowriter
as an input device, a page of standard text, complete with integrand and
summation signs, was introduced into the computer and a linearized alge-
braic program was produced. Such a system is sure to be implemented with
a cathode ray tube and light pen as input devices.

Besides the desire to manipulate numerical values, the need to manipu-
late algebraic and symbolic data is of significance. Since much of the work
in the design of a new engineering product consists of the manipulation of
algebraic expressions, with the subsequent substitution of numeric values
for the algebraic symbols, it is reasonable to request that the computer
undertake the menial and well-defined tasks of manipulation. Thus the
development of algebraic manipulation languages is of considerable impor-
tance. To such an end primitive systems such as FORMAC * and ALPAK ¢
have been developed.

While both systems are excellent examples of the road to be pursued,
the present restrictions lead the author to believe that by the time both

T M. Klerer, “Two Dimensional Programming,” Proceedings of the Fall Joint Com-
puter Conference, Las Vegas, 1965.

¥E. Bond et al., “On FORMAC Implementation,” IBM Systems Journal, Vol. 35,
No. 2, 1966. Samples of FORMAC input and output are given in Appendix B of
this text.

§W. S. Brown, “The ALPAK System,” Bell System Technical Journal, Vol. XLII,
No. 5, 1963.



MACHINE LANGUAGE CODING

systems have been developed to a satisfactory level, other systems will have
been produced that will preclude their general acceptance. For example,
the logical decision-making facilities of both systems discourage the writing
of extensive production programs and encourage their use for one-off prob-
lems. Further, in a time-sharing remote-access environment with cathode
ray tube displays, an algebraic manipulator could fall back on the real-
time user to define the tasks to be undertaken, thereby eliminating the
necessity to prewrite a program.

Machine Language Coding

A programmer writing in the basic language of the computer can stay
close enough to the elemental operating procedures of the computer to
take advantage of some specialized techniques, but he has to contend with
several major disadvantages. Among these we may list:

(a) All operation codes and operand addresses must be written in some
numeric code.

(b) All addresses in this code must be absolutely defined. Thus the
programmer must either possess extrasensory perception—enabling him
to choose the address of a piece of data or instruction not yet defined—or
be prepared to backtrack over the coding and fill in holes that were left
when he attempted to make the forward references.

(¢) Any changes in coding or data assignment (such as the insertion
of an instruction) will necessitate the reassignment of many existing data
and instructions, and the consequent modifications of all references in the
original program.

(d) Though the actual data to be processed may be in (say) decimal
mode, the programmer must (for most computers) convert this data to
binary mode for manipulation.

(e) An inherent fear of the necessity to rearrange the addressing struc-
ture of the program often leads the programmer to leave sufficient space
around certain portions of the program and data to permit insertions. This
leads in turn to an inefficient use of the available memory. This disadvantage
is not inherent to machine language coding, but rather to most machine
language programmers.

(f) Since mere coding does not solve the original problem, the pro-
grammer is also faced with the tasks of transferring the coding into a

7



INTRODUCTION

machine-readable form, proofreading the transformation, and loading the
code into the memory of the computer.

(g) Portions of previously written programs, which may have a use in
the present coding effort, cannot be included without being recoded to
conform with the present address assignments.

Symbolic Language

Because of the format of machine language and the consequent tedious-
ness of transforming a problem definition into that language, symbolic
languages have been developed to overcome many of the inconveniences.
In conjunction with an assembler, the programmer uses mnemonic, easily
remembered codes for operators, instead of bit patterns or octal codes, and
can choose names to represent data items and the addresses of instructions.
Further, representations of data are automatically converted to the internal
machine mode.

The assembler is a machine language program that translates symbolic
code into machine language and also provides the facilities to relieve the
programmer of many housekeeping chores. For example, since symbolic
language is generally a series of statements with a one to one correspond-
ence with machine language instructions, it is a simple task for the assembler
—given a starting address for the first instruction—to keep track of the
relationship between symbolic instruction names and actual machine ad-
dresses. Thus symbolic references to instructions can be correctly related
to the referenced instruction.

To ease the task of coding, a symbolic code not only has statements
that are in a one to one correspondence with machine codes, but also
declaratives, which enable the programmer to declare constants and data
areas and to append symbolic names thereto, and control statements, which
will direct actions within the assembler itself.

An assembly system may also contain the ability to incorporate sets of
standard instructions by including a single statement in the symbolic code.
In certain systems, all references produce linkages to such standard routines.
Such a system is a macroassembler. For example, some computers have
no built-in floating point hardware, whereas most scientific computations
are performed in the floating point mode. Thus such a system, which
enables the programmer to write a code akin to a machine language, but
which in fact creates linkages between the data and the specialized routines
that simulate floating point hardware, is an immense boon.

8



INTERPRETERS

Interpreters

Within the collection of names given to members of the family of trans-
lators is that of interpreter. 1t would seem logical to assume that this would
be a pseudonym for a translator, but again, a special meaning is engendered
in the mind of the computeree by this word. In most cases, the program,
which fulfills the assignment of being an interpreter, possesses many of the
qualities of a compiler or an assembler, but manifests one important
difference.

If we consider both the compiler and assembler to be translators, the
target of each being a language readily understandable to the computer
and by means of which the problem described in the original language
can be executed, then each may be considered to be a two-phase system,
with a translation phase and an execution phase. Moreover, each phase is
intact, the execution phase being capable of being repeated without limit
and without recourse to the translation phase as shown in Fig. 1.1.

COMPILER
PROGRAM
SOURCE OBJECT TRANSLATE
LANGUAGE _Q— » CODE r PHASE
7
N
e
RESULTS EXECUTE
——{  DATA PHASE
-
FIGURE 1.1

An interpreter, on the other hand, does not have distinct translate and
execution phases (Fig. 1.2), the two being interleaved continually. That
is, as soon as one phrase of the source language has been translated to an
executable code, the code is executed without waiting for the translation

9
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of the complete source document. Further, since the interpreter must be
resident in the computer memory during execution, and hence memory
space is at a premium, the executable code is not saved. This then implies
two other features:

(a) If looping is to be permitted in the problem description, the source
language must also be retained in memory.

(b) Even though a phrase may have been translated once, any attempted
reexecution of that phrase will require a retranslation.

INTERPRETER
PROGRAM

RESULTS

SOURCE
LANGUAGE

DATA

FIGURE 1.2

As a consequence, the execution speed of a program operating under
the control of an interpreter is slow, and only relatively small programs
can be executed. However, on the credit side, there is a definite affinity
between the object code and the source language at all times, so that diag-
nostics during the execution phase can be stated in terms of the original
code written by the programmer rather than in terms of the object code
with which he may not be familiar.

Many interpretive systems have been stopgaps in providing systems for
newer machines intended to replace existing computers; they are intended
to save an overwhelming burden of reprogramming at the instant of the
changeover. For example, when the author was Director of Computing at
Queen’s University at Kingston, Ontario, in 1961, the Computing Center
converted from a Bendix G-15D to an IBM 1620. During the period in
which the Bendix had been resident, many programs had been written
in a language known as INTERCOM 500, itself an interpreter. Such a

10
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language was not immediately available on the IBM 1620 and thus, to
ease the burden of reprogramming, a similar compatible language inter-
preter, QUICK," was developed. With the use of this system, many already
operating programs were operational immediately, and no manpower was
lost among the users as a result of the changeover—though, of course,
manpower was utilized in the development of the system.

However, such a system substantially slowed down the potential speed
of the computer and subsequently an assembly system was written, EASY, *
which performed a simple translation from the INTERCOM language to
the machine language of the IBM 1620. At this point most of the speed
advantage of the newer machine had been achieved and already debugged
programs from the G-15D were operational on the 1620. However, new
programs were being written in the languages available for the 1620.

With the advent of System/360, interpreters are important again, taking
their place in the panorama of programs to enable programs that were
written in the machine language of older machines to operate on this new
machine. However, this is not unexpected since such interpreters, known
in this peculiar instance as simulators, were available on prior machines.
What is different here is that the interpreter for System/360 is partially
implemented by the provision of auxiliary computer hardware, and conse-
quently has been given the name of emulator.

The eminent computer text author, D. D. McCracken, tells the story of
a certain corporation which, in the infancy of the computer business,
possessed a machine known as the CPC, for which it had many programs
written, including one for payroll calculations. The CPC was a pre-Von
Neumann machine, which had no stored program and which interpreted
instructions punched into a sequence of cards to activate the execution of
the program. Looping was achieved by the operator who took the instruc-
tion cards from the output stacker and returned them to the input hopper.

Eventually, the CPC was replaced by an IBM 650, a far superior
machine, but with an incompatible machine language. Thus to save re-
programming, a CPC simulator was written and existing programs were
operated under this program’s control. When the 650 was replaced by the

7J. A. N. Lee, “Queen’s University Interpretive Coder, Kingston.” Report No. 28,
Queen’s University Computing Centre, 1962.

$J. A. N. Lee, “Exchange Assembly System,” Report No. 30, Queen’s University
Computing Centre, 1962.

11
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IBM 704, it was only natural to write a 650 simulator for the 704 so that
the 650 machine language programs could continue to operate without
being reprogrammed. Of course, one of the programs to be run under the
650 simulator was the CPC simulator, under which the payroll program
was still running.

The IBM 704 was eventually replaced by an IBM 7090 with a 704
simulator, and that machine by the STRETCH. . . .

Compilers

The differentiation of a compiler from the family of translators is not as
well defined as the difference between other types of translators. While we
may clearly classify an assembler as a program that translates from a sym-
bolic language to an executable code in essentially a one for one process,
and an interpreter as an interleaved translator and executor, the compiler
may be regarded as a pure translator in which the source language is
machine independent and the object code machine dependent.

Further, a compiler may be considered as two basic parts together with
a set of utility routines. The first part is an analyzer, or sieve, which has
the ability to distinguish between the types of statements in the source
language. The second part is a set of generators that produce the object
code on the basis of the relevant information in each source language
statement. The choice of generator to be used for a particular statement
type is the task of the sieve.

In many compilers, most of the memory taken by the system is used up
by the utility routines, the arithmetic scanner and its associated generator.
The other generators are then relatively small routines, each extracting
from the source document the relevant information to be substituted into
the object code by referring to the utility routines. For example, the
symbol and number extraction routines are used by almost every generator.
Similarly, the symbol table routine provides data on object-time-memory
allocation to each generator on the basis of the symbols provided by previ-
ous statements.

Once such a set of utility routines is available in a compiler, extensions
to the language merely require the introduction of a new exit to the analyzer
linking to a new generator. At this point, the problem of writing a new
generator and sieve exit may be far less severe than that of acquiring suffi-
cient computer time to reassemble the compiler.

12



BOOTSTRAPPING

A conceptual difficulty that must be overcome by the compiler writer,
and one for which he must have a well-ordered mind, is that of keeping
the various languages with which he is working separated. For example, it
is conceivable that the compiler is being written in language A, which is
really the symbolic code for machine language B, and the resulting compiler
will accept language C for conversion to object code D.

It has been proposed ¥ that the difference between a compiler and an
interpreter may be defined in terms of the input and output data. The com-
piler accepts input in the form of a string of characters and, with reference
to a set of production rules, produces another string of characters which, by
pure coincidence, happen to be a set of machine language instructions to
solve the problem defined in the input language. On the other hand, the
interpreter uses the input strings as a set of instructions and by following
these commands executes the algorithm, producing a set of output which is
relevant to the solution of the problem.

Bootstrapping

Whenever a new computer is placed on the production line, its usability
is not only dependent on the ingenuity of its electronic designers but also
on the competence of the software development group. However, such a
group, at its inception, is itself devoid of languages except the one built
into the machine, that is, machine language. The group’s first task then
must be to produce an assembly system capable of producing machine code
for the minimum set of instructions, that is, the set of instructions necessary
to implement the minimum assembler. This recursive definitive of the
minimum set of instructions is necessary for the next phase of development,
for once the assembler has been written and debugged in machine language,
it may be recoded in the assembly language itself. Thus after the initial
writing, debugging and rewriting, the assembler may be reassembled from
the assembler code.

Bootstrapping is a process of translation using language A as input to a
program, written also in language A, to produce another translator that will
accept language A+ as input. At the level of the assembler, bootstrapping is
a common procedure for developing higher level assemblers. For example,
in the primitive assembler there may be no facility for the declaration of
data blocks, such blocks being declared by the repetitive definition of single

T D. Stemple, Systems Consultant, University of Massachusetts, Private communica-
tion.
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words or the redefinition of the object-time-memory allocation register so
as to leave an area of memory for storing the array. Similarly, the primitive
system may not allow the occurrence of arithmetic operations within the
symbolic operands, while this added feature in later versions will help ease
program data referencing. Thus, as the implementation of an assembly
system progresses, more convenience-features may be added. During such a
development, it may be difficult to judge when one version is suitable for
general release to the users and work on further embellishments should be
halted. These are managerial decisions, each of which can substantially
affect the subsequent success of the total computer system.

Though much rarer, there is a growing tendency on the part of both
manufacturers and educational institutions to write the compiler for a
procedure-oriented language in that language itself. There is at least one
FORTRAN/FORTRAN and one ALGOL/ALGOL, while it is rumored
that a high level PL/T is written in a lower level PL /1. One of the reasons
for this emergence of the bootstrapped compiler is the need to teach com-
piler writing without the added complication of getting involved in the
intricacies of machine code. In fact, most of the problems that appear in
this text can be programmed in an algebraic language that also has the
facility for the testing of alphabetic data, or any FORTRAN that allows
Hollerith constants in assignment statements and IF statements.

At this level of sophistication it should be possible for a programmer.
given the knowledge that the particular compiler available in the local
computer shop is written in its own source language, to implement those
features of the language which he feels to be omissions and to recompile
the compiler. However, the haphazard intrusion of new features without
regard for their interaction could lead to havoc in short order. As will be
seen in later chapters, the avoidance of ambiguity in a language is of para-
mount importance in the design of the language itself; added features must
not create a situation wherein a standard feature becomes unusable.

Problem-oriented Languages

The algebraic, algorithmic, or procedure-oriented languages such as
ALGOL, FORTRAN, or PL/I are designed to further the communication
of mathematical problems to the computer, and therefore may be considered
to be special forms of problem-oriented languages. However, by general
usage, problem-oriented languages refer to those languages that are re-
stricted to the description of more specialized problems. For example,
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COGO 7 is a language for civil engineers and surveyors, and uses phrases
containing keywords that are indigenous to the standard vocabulary of the
prospective user. On the slightly lower level, a system known as MAGIC *
enables the user to describe computations in terms of matrix operations by
using such key words as ADD, INVERT, or SOLVE.

Although most problem-oriented languages are interpretively translated
and executed, this is more because of convenience than special design.
However, it must be anticipated that such languages will be of importance
1n commercial time-sharing, remote-access systems, where a console may
be placed in a small office where business is confined to a single type of
product. Whereas in the past only large institutions and corporations could
afford computers as the “jack-of-all-trades,” the sharing of a central com-
puter by many small companies will lead to the desire for the availability
of more specialized languages at the console.

The major advantage of these problem-oriented languages lies in the fact
that very few new notions are included above those learned by the prospec-
tive user in his own apprenticeship, and thus little time is lost in the pro-
gramming course that elucidates the intricacies of the particular language.
Using COGO, the author has found that a group of sophomore students
taking a course in surveying (and their instructor), all of whom had no
previous computer experience, could write competent programs after only
one hour of instruction. In fact, most of these same students wrote a COGO
program the same evening, which solved a surveying problem that was
originally intended as a term project. Within 24 hours, the instructor re-
vised his estimate of the work load in the course and was able to assign
problems that required much more thought than those given previously,
without the fear of an overload of tedious calculation.

If algebraic compilers can be regarded as one end of the spectrum of
problem-oriented languages, then the compiler-compiler must be the other
extreme. As opposed to the technique of bootstrapping, which has no real,
distinct source language and which by definition is restricted to a single
target language, a compiler-compiler is a translator that accepts a language
descriptor as input, and outputs a compiler capable of translating the lan-
guage described in the descriptor. In this manner a single descriptor lan-
guage would be capable, along with a compiler-compiler, of producing

¥ D. Roos and C. L. Miller, “The Internal Structure of COGO,” Report No. R64-5,
Dept. of Civil Eng., Massachusetts Institute of Technology, February, 1964.

tJ. A. N. Lee, “MAGIC—A Matrix Algebra General Interpretive Coding,” Report
No. 43, Queen’s University Computing Centre, 1964.
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compilers for many different user languages. By this simple definition, any
assembler might be considered to be a compiler-compiler, but since this is
not the prime purpose of an assembler and since no special features to
implement compiler writing are built into an assembler, we shall exclude
assemblers from the class of compiler-compilers. Similarly, any system that
is not specifically designed to compile compilers will be excluded from
the set.

In 1967, there does not exist a single compiler-compiler that is avail-
able from any computer program library, though several exist as the pro-
prietary programs of individual manufacturers. Similarly, although several
have been discussed in the literature, there is no commercially available
syntax-oriented translator.

Syntax-oriented Translator

As in a compiler, where the input consists of a language describing the
problem to be solved and the output is an object code which, when executed,
will solve the problem, so the syntax-oriented translator accepts a descrip-
tion of the language and produces T an object code that will translate such
languages. See the schematic diagram in Fig. 1.3. Obviously, such a process
involves a further language level, in that we now require a language to
describe a language, and this entails another language to describe that
language. At this stage we must resort to our own native tongue. Such
language descriptors will be described in later chapters.

The approach proposed by the proponents of the syntax-oriented trans-
lator has the advantage of providing a system that will enable the experi-
menters and compiler writers to test their ideas; with a second descriptor
to define the relationship between the language descriptor and the object
code, the system could be machine independent. This means that a manu-
facturer could maintain a set of compiler language descriptors, including
one for the syntax-oriented translator itself, and then by merely writing a
single second descriptor for a new machine, he could make all systems
immediately available. Similarly, the development of a new language by the
writing of a new descriptor would make that language available on all
machines that accept that descriptor. With any degree of competency, this
might resolve the problem of a machine becoming outdated by the lack of
up-to-date systems when the manufacturer moves his programming staff to

It is uncertain, at the time of writing, whether a true syntax-oriented translator

will actually produce an object program or will be self-modifying and thus become the
compiler itself.
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more modern computers. This, of course, will depend on the universal
standardization of the language descriptors.

On the debit side, a compiler provided from a jack-of-all-trades translator
cannot be as efficient as a compiler written specifically for the language.
This fact, and the competency with which the gap between these two ex-
tremes is closed, may be the deciding factor as to whether such a system
will be generally acceptable to the user, or whether the system will be
relegated to the drawing board.

A specialized treatment of a syntax-oriented translator will be found in
Ingerman.?

Description of the

source language »
—(SYNTAX)

Syntax- Target

Source Language | » gl::l;iel:r | ) | Language

The relationship
between the source [———@B—

language and the
target language

(SEMANTICS)

FIGURE 1.3 A Schematic of the Syntax-Oriented Translator

The Passes Quandary

In the implementation of a translatory process, one of the first decisions
to be made is the number of passes to be included in the system. In a large
computer system with high-speed, secondary level storage devices, the time
to reload the main memory may not be significant, and therefore the over-
head time in translating in phases with intermediate output to an auxiliary
memory for input to a later phase can be accomplished at little cost. How-
ever, in a primitive computer system with slow auxiliary memory, or in
one relying on intermediate card output and the input of phases from a card

TP. Z. Ingerman, A Syntax Oriented Translator, Academic Press, New York, 1966.

17



INTRODUCTION

teader, the overhead time may be great enough to warrant minimizing the
number of passes through the computer. Further, the availability of imme-
diately accessible memory may decree that since the whole compiler or
assembly system cannot reside in memory at one time, a multipass trans-
lation system is necessary.

If one defines the number of passes in a translatory process as the
number of distinct programs that must be introduced into the computer to
complete the conversion from source language to machine language, then
it is evident that very few compilers are truly a single pass system. In fact,
most compilers are four pass systems, as shown in Fig. 1.4. One of the

COMPILER PHASE 1

scan statements; collect labels, variable names SOURCE
__<____.

and constants; tag statements by LANGUAGE

type code for compiler phase 2

| >
COMPILER PHASE 2
translate statements and produce INTERMEDIATE
assembly code g SOURCE CODE
[ -

ASSEMBLER PHASE 1

scan assembly code; collect names
and assign object time address -t ASSEMBLY CODE

ASSEMBLER PHASE 2

translate assembly code
to object code and output - ASSEA'):':; CODE

ADDRESS TABLE

3 OBJECT CODE

FIGURE 1.4 Typical Four-Pass Compiler Organization
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principal advantages of such a four pass process is that it utilizes the utility
routines in the assembler to allocate memory space, thus reducing the size
of the basic compiler. Of secondary importance is the ability to obtain a
copy of the intermediate assembly code. While this may be of considerable
importance to some programming specialists, it is generally incompre-
hensible to the nonspecialist (who form 90% of the users of a computer),
and only wastes machine time in its production. However, in a corporation
where the task is to produce operating software in the shortest possible
time, the duplication of effort in writing memory allocation routines for
both the compiler and assembler is obviously not economical.

Thus if the features of the assembler are combined into the compiler, the
number of passes can be reduced to two without loss of machine time or
efficiency of the object code, although with the expenditure of memory to
accommodate the extra code.

As is common in many physical processes, where it is possible to stream-
line the process and where the accomplishment of streamlining by a factor
of two is comparatively straightforward although the further improvement
takes an inordinate amount of energy, reducing the number of passes from
two to one in a compiler causes innumerable headaches. A pseudo one-
pass system can be accomplished by maintaining all processor phases in
memory simultaneously and by storing intermediate results in the same
memory, instead of using auxiliary storage devices. However, this is merely
a degenerate multipass system, since it is not required that each phase exist
in memory simultaneously. Thus a true one-pass system is one in which
the omission of any one routine would not enable the whole scope of the
language to be translated.

In general, the desire to implement a one-pass system will entail the
adoption of one of the following solutions:

(a) The entire source program is stored in memory together with all
phases of the compiler so that only one input and output operation is
required. In this manner, the translator may scan each statement many
times as if the processor were a multipass system.

(b) Stringent restrictions to the source language to include only those
statements capable of being sustained in a one-pass system are applied.

(¢) Relaxations in the target language efficiency are allowed, and some
of the features existent in the program loader are utilized to overcome prob-
lems in backtracking.
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The first of the alternatives presents no new ideas and merely decrees
that, given sufficient memory, almost anything and everything can be
accomplished. The second alternative detracts from the objective of imple-
menting a translator for a proper language and does not allow for language
extension. Thus we are left with the third alternative. However, it would
be illogical to accept this as the best solution, having eliminated the other
two, since it has not been established that only one alternative is best or
that these are in fact the only three solutions. The acceptance or rejection
of alternative (¢) must be predicated on the answer to the question: “How
much efficiency do I lose?” Also in any particular computer shop, the
time lost in execution of the object code must be balanced against that
gained during compilation. For example, in an educational institution where
the greatest proportion of jobs are run for students in computer-program-
ming courses, the time expended in compilation far exceeds that for execu-
tion, so that any decrease in compilation time is significant. On the other
hand, in a production shop where a single program (debugged and com-
piled) may be run many times, the execution time is of considerable
importance.

The major problems of compiling in a single pass are concerned with the
compilation of forward references from one portion of the source program
to yet undefined statements. In particular, a FORTRAN GO TO state-
ment containing a statement identifier of a statement not yet encountered
cannot be compiled as a simple unconditional jump or branch. This may
be overcome by compiling an indirect branch referencing a memory word
into which the address of the statement identified will be stored by the
loader, or by outputting a branch instruction with a null address, which is
to be overlaid by the actual address during the loading of the object pro-
gram. The latter technique (known herein as backtracking) conserves
object-time-memory space, but wastes both overhead time in the loader
and temporary storage, which maintains a list of the addresses of the in-
structions to be overlaid. The former technique wastes only one object-
time-storage location (per forward referenced identifier) and introduces
extra machine cycles in chaining through the indirect addressing. These
problems will be discussed in greater detail in Chapter 5.

In earlier generation computers, using drums as main memory with a
1+1 addressing system © in which each instruction contained the address
of the next instruction to be executed, a forward reference could be coded
directly and a notation left in a table designating the address at which

T For example, the Bendix G-15D and IBM 650.
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the referenced statement was to start. The choice of the starting address
of the referenced statement would be made on the basis of the time taken
to interpret the branching instruction and the angular position of the drum
at the time the next instruction was to be accessed. After the first forward
reference to a particular statement identifier had been encountered, every
other reference would be coded as if the identifier had been defined.

In a one-pass system, the interactive features of certain statements
can cause insoluble problems if the ordering of statements is not specified.
For example, the interaction of the FORTRAN statements DIMENSION,
EQUIVALENCE and COMMON (as will be discussed in Chapter 4) can be
overcome by requiring that the statements occur in the order:

COMMON
DIMENSION
EQUIVALENCE

and precede any executable statement in any subprogram.

While one group is striving to minimize the number of passes in a com-
piler, it is quite feasible that another group will elect to increase the number
of passes so that a compiler can be implemented on a minimum-memory
machine. For example, the users of a computer with minuscule memory
have as much right to an algebraic compiler as the users of a larger machine.
The means by which this right is attained may engender an entirely differ-
ent philosophy from that for the implementation on a large machine, and
—provided that the need justifies the computer time expended—the almost
impossible can be brought about. Thus the building-block compiler was
born.

As a starting premise, it has been found from experience that the amount
of memory needed to store the source language in internal mode is greater
than that required to accommodate the object code. Thus if a portion of
the available memory is reserved for the storage of the source program,
and the remainder is used for the compiler and work areas, it should be
possible to convert the source code to object code in situ. This was found
to be possible in the IBM 1401, but the memory remaining after the
reservation of the input zone (which incidentally had to be large enough
to contain certain object-time routines such as input/output and library
functions) permitted only very small portions of the compiler to be resident
at any one time. However, by placing all work areas in COMMON with
respect to each phase of the compiler, a 61 pass system was developed to
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afford the opportunity of FORTRAN programming to 1401 users. A com-
plete description of each phase is given in Appendix A.

The question “how many passes” may well be significant in the develop-
ment of a time-sharing operation. In a computer system with a single
central processing unit, the overhead time of moving data in and out of
the main memory and searching for a specific compiler, assembler or utility
system must be kept to a minimum, or else the setup times will accrue to
the extent that the amount of actual production work is reduced to the
point where time sharing is no longer economical. In a system with multiple
processors and overlapped input/output, the location and transfer of shorter
programs can be achieved with little loss of main processor time. Thus in
a small time-sharing environment, a resident one-pass system may be more
profitable (but restrictive on the size of program to be executed and the
diversity of languages available), while in a multiprocessing situation, a
building-block compiler with the ability to select the appropriate generator
will be more suitable. Similarly, to gain a spectrum of languages at the
console, a syntax-oriented translator resident in memory with shuffling de-
scriptors could offer sufficient advantages to outweigh the disadvantages of
the loss of memory and slower compilation and execution times.

Summary

The preceding review is certain to have omitted some of the concepts
of some of the members of the computer fraternity, and to have propounded
some definitions that will not satisfy all readers. However, neither can the
following chapters be construed as representing all the techniques of any
single system, each particular algorithm having a place in most systems.
It is left to the reader therefore to construct his own translator for the
purpose he desires, and not to be constrained by the artificial barriers of
the semantic definitions of the terms compiler, assembler, etc.

The remainder of this text will describe the various routines and the
algorithms that are used in compilers and assemblers to translate from the
source language to the object code. Throughout, the object language shall
be referred to as a symbolic code, though a one to one translation of this
would result in machine language. The computer considered to be the ulti-
mate receiver of the object code is purely imaginary, as is the symbolic
code. However, it is assumed that the machine has index registers, a single
accumulator, indirect addressing, and specific commands for the manipula-
tion of characters or bytes. Both binary and decimal internal number
representations will be considered.

22



The Formal Definition
of Language

A set of rules that defines the formulation of natural language state-

ments is a grammar, which unfortunately is not always taught as a
complete set of rules in our grade schools, but rather as a disjointed com-
mentary on the shortcomings of a child’s expression of thought. Thus the
coalescing of a formal grammar is mainly concerned with the task of ex-
tracting from the well-known rules, often applied instinctively, sufficient
data to present a formalism that will both adequately model our mode of
communication and also allow the future generation of yet unspoken but
meaningful thoughts.

In music, tonality controls the construction of a harmony. Though the
key signature of a piece of music is evident on the manuscript, the listener
needs to have the key established by dominant and tonic chords before
other modulating or chromatic progressions are introduced. Thus the
student of music is taught the construct rules for the development of
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satisfying pieces. Similarly, the principle of seriality (in a 12 tone scale
and in which no note is repeated), of which Stravinsky is the greatest
exponent, establishes the rules that are responsible for the production of
more modern music. However, since our ears have become attuned to the
principle of tonality, seriality is not always as satisfying to some listeners
as tonal compositions.

The Modes of Definition

In the process of learning a new computer (or nonnatural) language,
the format of a statement or phrase is often presented in terms of a natural -
language description that defines the permitted components and required
features. For example, the definition of a DO statement in FORTRAN may
take the form:

DO ni = my, ms, ms

where 7 is a statement identifier, i is a simple integer variable, and my, ms
and mj3 are simple integer variables or constants. In this manner, the syn-
tactic prescription for the writing of a legal DO statement may be described
depending on the user’s knowledge of several other prescriptions. For
example, in this case it is- assumed that the reader is familiar with the
formalisms that describe statement identifiers, integer variables, and integer
constants. However, such a description must be adjoined by a semantic
description to permit the reader to formulate a statement that will be com-
piled to a set of object code, which in turn will execute the desired
operations.

In particular, a semantic description must indicate that the statement
identifier contained in the DO statement refers to a statement not pre-
viously defined in the subprogram, and that the assigned values of the
variables or constants replacing m;, m. and mz; must relate to each other
in a specific manner. That is,

V(my) >V(m;y) >0 and V(mz) >0

where V(x) is the value at execution time of the variable or constant that
replaces the pseudovariable x.

While such a description is readable and gives sufficient information for
the correct formulation of a statement, the exceptions and alternatives must
be given in appended descriptions or in a set of alternate prescriptions.
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Semantic description of statements has not reached the state where a
simple prescription can be given in a manner that is readily understandable
to all users. Elgot and Robinson ! have proposed a machine model to
simulate some of the basic features of the central processing unit of a
modern digital computer. Using the notion of a random access-stored pro-
gram machine (RASP), they consider the relationships between a problem-
oriented language and machine language. However, little further work has
been published that would allow the semantic definition of language com-
ponents in a unified, concise manner.

Syntactic definition, contrariwise, has been successfully developed in a
complete, efficient and concise form. In fact, the success of the manner of
definition can be judged from the diversity of language descriptors that
have been developed from a single original proposition.* The formal
definition of syntax is more compact and less ambiguous than a similar
definition in conventional text material. However, this does not imply that,
by definition, a formal definition cannot produce an unambiguous result.
While an English language description with many if ... then, or and and
connectives can be ambiguous in that the reader is left bewildered as to
what procedure to follow to formulate a legal statement, the formal
definition may clear up this dilemma. But two definitions may allow the
formulation of the same sequence of characters. In the same manner, formal
definitions of the syntax of a natural language may allow the construction
of the same sentence from differing specifications. For example, those
English words that perform double duty as both verb and noun, such as
rose, bow and list, or exist as both an adjective and verb, such as live, can
cause the evolution of an ambiguous creation. However, although am-
biguity of definition can be eliminated, the elimination of ambiguity in
determining the origin of an object is difficult. For example, taken out of
context, the written word read can have multiple meanings, and the im-
pingement of the same word on the ear can engender thoughts of a color
or a plant. Thus to say that the origin of the word was from the definition
of a verb, noun, or adjective is impossible. Similarly, FORTRAN has
sequences of digits which, when taken out of context, can either represent
an unsigned integer or a statement number.

T C. C. Elgot and A. Robinson, “Random Access-Stored Program Machines, An
Approach to Programming Languages,” Jour. A.C.M., Vol. 4, Oct. 1964. Since the
first edition, significant steps in this direction have been formulated by the Vienna
Laboratory of IBM.

1 C. Backus, “The Syntax and Semantics of the Proposed International Algebraic

Language,” UNESCO Conf. on Info. Proc., Paris, 1959.
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While semantic and pragmatic ambiguities are of considerable interest,
they are without the scope of this text.! Only semantic ambiguity will be
our concern, and then only with respect to its avoidance.

Language Descriptors

The language in which a language may be defined is termed a mera-
language and must be uniquely distinguishable from the language being
described. Thus attempts to define a language in terms of itself can lead
to paradoxes due to the indistinguishability of the metalanguage and the
language. For example, we may say in the metalanguage of English that
a sentence has certain qualities, such as it is grammatically correct or that
sentence is true. Consider then the sentence: This statement is false.t If,
not being given the information as to whether this sentence is written in
the language or metalanguage, one assumes that the word zhis refers to the
statement itself, then the sentence is paradoxical. However, the same
utterance on the part of a scholar pointing to some other statement is
clearly valid. Thus the metalanguage for ALGOL, for instance, must be
clearly distinguishable from ALGOL. By these requirements, the symbol-
ism of a metalanguage must not include the symbols used in ALGOL.

To formalize the definitions in the metalanguage, each definition is given
the form of a statement or construct, which is analogous to a formula.
However, to accomplish some unique features of such a specification, the
operators define a mode of construction, or concatenation.t In this text we
shall employ the following symbols in the metalanguage:

<x> the object named x

= ...can be formed from. ..

| or (the exclusive or)

{z}g z is to be repeated at least i times but not
more than j times. When { is omitted, its
value is to be assumed to be 1, and when
j is absent, its value is assumed to be
infinity.

[...] a reducing set (see a later description)

See P. L. Garvin, Editor, Natural Language and the Computer, McGraw-Hill Book
Co., New York, 1963.

1 B. A. R. Russell, Principia Mathematica, 3 Vols., 1910-1913.

§ From concatenate, v.t., to join or link together; connect in a series. Standard
College Dictionary, Funk & Wagnall, 1966.
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Further, for the sake of clarity, another convention of typesetting will be
adopted. Those characters which are to form part of the language being de-
scribed will be set in sans serif type, such as A, B, C. .., while the names
of objects (enclosed in corner braces <>) will be set in italics. Thus an
object appearing outside the corner braces in sans serif type is explicitly
a language character. The corner braces used to parenthesize a component
name will not become confused with the less than or greater than symbols:
The metalanguage symbols occur in pairs with their open ends facing each
other, whereas the less than and greater than symbols are obviously dis-
jointed. For example, there is no confusion between the string >|<, which
is taken to mean the symbol for greater than or the symbol for less than,
and the string <|>, which defines a metalanguage name |.

The format of a metalanguage construct will be (in the meta-metalanguage
of English) as follows:

The object named in the corner braces may be formed from the objects
named or specified on the right.

This definition specifically avoids any reference to concatenation on the
right-hand side of the construct, since not all constructs contain the opera-
tion of concatenation, and where desired, the concatenation operator is
specified. In fact, concatenation is implied by the juxtaposition of names
or objects in the construct. Thus the metalanguage construct

A<lx>;

is intended to symbolize the linear concatenation of the object A, the object
named x and a semicolon. If <x> had previously been defined as any
single digit, then a legal construct of A<x>; would be

Al; or A9
but not Ax; or even AX
since neither x nor X is a legal replacement of <x>.

To signify alternatives in the construct, the or symbol is used. Thus a
decimal digit might be defined by the metalanguage statement:

<decimal digit> := 0|1/2|3|4|5/6|7|8|9
which is taken to mean
the object named “decimal digit” may be formed from any one of the

characters 0,1, 2,3, 4,5, 6,7, 8 or9.
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Note that while the names used in corner braces are generally chosen in
this text to be indicative of the semantic nature of the resulting accretion,
in fact, they are merely a collection of marks that are distinguishable one
from another. Thus the above definition might well have been written:

<dd> := 0|1]2|3/4/5/6|7/8]9

Two definitions cause problems in the metalanguage, and thus will be
explained in the meta-metalanguage:

<null> :=
<blank> :=b

The first definition above declares that the object named null is to be formed
from a nonexistent character. That is, the item is absent from the language
being described. This gives us the opportunity to state in the metalanguage
such statements as

... the third index may be omitted.
In particular, consider the statement from a FORTRAN text:

Negative constants are prefixed with a — sign; positive constants may
have a + sign, but do not require it.

If an unsigned constant has been predefined and given the name
<constant>, then a signed constant may be defined by the construct:

<signed constant> := <sign> <constant>
where a <sign> has been defined by the construct
<sign> 1= <null>|+|—

which indicates that a <sign> may be chosen from either of the symbols
+ or —, or may be omitted.

The definition of <blank> is necessary when it is desired to make the
metalanguage both readable and unambiguous. For example, take the above
definition of <sign>. Although this definition appears in print as a number
of characters followed by a white space to the right-hand edge of the page,
it is in fact typeset using a special set of slugs that leave no mark on the
paper. This lack of marks leaves one in a quandary as to whether the blank
belongs to the set of italicized characters or the sans serif set. So, in
the definition, we are uncertain as to whether a <sign> is defined as the
<null> object, a + sign or a — sign followed by a large number of blanks.
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To overcome this ambiguity, we shall specify that printed blanks are not
part of the metalanguage and will be ignored, except when such a blank
is a mandatory part of the language being described. When a blank is to
be included in the accretion, the mark b or the name <blank> will be used.
Thus in the language being described, the object produced will be “ 7,
while in the metalanguage the mark denoting the same mark will be b,
which is given the name <blank>. For a similar distinction between the
object, the symbol for the object, and the name of the object, see the con-
versation between Alice and the White Knight in Lewis Carroll’s Alice

through the Looking Glass.

Recursion and Repetition

The definition of some portions of a language give so many options that
the specific definition of the statement by the concatenation of only those
items listed in the construct becomes unwieldy, if not impossible. For ex-
ample, many statements in computer languages contain a list of unspeci-
fied length, each item of which is a variable, the items being separated by
commas. To define such a list as

<list extender> := ,<variable>|<null>
<list> := <variable> <list extender> <list extender> <list extender>

not only prescribes a limit to the number of items in the list, but also fails
to be concise. A technique of recursive definition solves this problem both
concisely and without recourse to special symbolism. Thus the above two
definitions may be consolidated to:

<list> := <variable>|<list>,<variable>

Such a construct would seem to be redundant, for it contains two alterna-
tives, only one of which can be used since, at the outset of using the con-
struct, a <list> does not exist. However, if the first of these alternatives
is regarded as a starter and the other as an expander, then one can use
the <list> chosen from the starter to form other longer <list>s by using
the expander. Some linguists have objected to the use of a recursive defini-
tion and, as an alternative, have introduced a set of symbols indicating the
repetitive concatenation of a given set of objects. Such repetitive concatena-
tion is not restricted to the addition of objects to either the right-hand or
left-hand end of an existing accretion. However, the repetition is to be
performed in situ so that the substring is formulated before the remainder
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of the statement (if any) is concatenated. The symbolism for repetition is
{z}] where the subscript and superscript define the limits on the number
of repetitions to be performed. Examples of the use of repetitive braces
include:

{A}3 can be expanded to AAA, or AAA
{AB}Z AB or ABAB
{A} AAAAAA, . . . or astring of As of any

length. The metastatement is equiva-
lent to {A} 7.

{AA]A}? A AA AAA AAAA AAAAA or AAAAAA
{AB}? A,B,AB,BA,AA or BB
X{A}? Y XAY,XAAY or XAAAY
X{A}2 X,XA or XAA
{AB|C|D}? AB.CorD
The metastatement is equivalent to
{A[B|C[D}3

With this mode of specification, a <list> may be defined as:
<list> := <variable> {,<variable>}%

This type of definition has the advantage that the size of an accretion may
be defined explicitly, if so desired, while a conciseness that is not possible
without the use of a recursive definition is maintained. As an adjunct to
recursion, but without adding a complete new metalanguage definition,
Ledley T has suggested the use of a qualified :=. He has used the notation
of a superscripted :=, in which the superscript defines the maximum num-
ber of times that the construct may recur to formulate the object. Thus

6
<list> := <variable>|<list>,<variable>

may construct an accretion in which the object named <variable> occurs
no more than six times, but at least once.

The use of repetitive braces with the limits 1 and 1, though not essential,
allows the reduction of the number of metastatements in a formal statement

T R. S. Ledley, FORTRAN IV Programming, McGraw-Hill Book Company, New
York, 1965.
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with several alternatives at a secondary level. For example, in IBM 1620
GOTRAN,! the maximum arithmetic assignment statement consisted of
a simple variable on the left-hand side and an expression on the right
containing no more than one arithmetic operator. If <variable> and
<number> have been predefined, and one does not use the repetitive
brace notation, an assignment statement in GOTRAN would have to be
defined by the metastatements:

< binary operator> 1= +|—|/|*|**

<unary operator> := +|—|<null>

<element> := <variable>|<number>

<assignment statement> := <element> <binary operator> <element>|
<unary operator> <element>

With the repetitive brace notation, the same set of definitions may be con-
densed to a single metastatement:

< assignment statement > ={ <variable> |
< number> 1 {+|—|/|*|**)*{ <variable>|
<number>Y1|(+|—|<null>}'{<variable> \
<number>}!

Both the notations of repetitive braces and restricted recursion contain
the disadvantage of not being linear definitions and therefore are not imme-
diately suitable as input to a syntax-oriented translator.

The indices of repetitive braces can be variables or expressions, provided
the value of the variables is defined within the construct. For example,
although a statement number * (in FORTRAN) can be defined as:

< statement number> := {<digit>}}
where <digit> := 0|1|2|3|4/5|6/7|89

this definition is only applicable to the statement number that occurs within
the body of a statement. Thus if we distinguish between a statement number
and a statement identifier (in this discussion) by stating that a statement
number occurs only in a statement body whereas a statement identifier

+ Reference Manual, IBM 1620 GOTRAN. Interpretive Programming System,
Form No. C26-5594-0, IBM, 1961.

1 This particular definition will permit the construction of zero statement numbers,
which is not permitted, whereas leading zeros are permitted provided at least one digit
is nonzero. The definition of a nonzero statement number is left as an exercise for the
reader.
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precedes the statement body, then a FORTRAN statement may be defined
as being in the form:

<FORTRAN statement> := <statement identifier >b <statement body>

where a <statement identifier> is to be exactly five characters in length, to
conform with the card format required on input to the compiler. If we
insist that the digits within a statement identifier be right justified in the
field of five characters, the following definition will suffice:

<statement identifier> := {<blank>} Tn {<digit>} a=s
whereas, if the number may occur anywhere in the field:

<statement identifier> :=
{<blank>} 5—m—n { < digit>} #<5 {<blank>} m=S—n

S5—m—n
Using this metalanguage, let us now define a simple language. As an

example, consider the language of propositional logic in Polish String nota-
tion T as defined by Allen ¥ :

A given expression is a WFF (Well Formed Formula) if and only if:

(a) itisa‘p, q, 't 's’; or

(b) itis a two unit expression in which the first unit is ‘N’ and the second
unit a WFF; or

(c) itis a three unit expression in which the first unit is a ‘C’, A, 'K, or
‘E', and the second and third units are WFF’s.

These definitions may be consolidated to the construct:
<WFF> := p|q|r|siN<WFF>|{C|A|K|E}!<WFF><WFF>

Since a language must be constructed from the building blocks of the
characters, the most common components of the statements must be de-
fined sequentially early in the total definition, so that a program may be
defined on this basis. In fact, since each definition in the metalanguage is
to be used to direct the syntactical writing of a program, the metalanguage
must eventually define a program. Thus, in examining the interaction of
metalanguage statements with one another, there must exist a series of
links starting with the exposition of the character set of the language (which
may in fact appear in more than one statement) and culminating in a

T See Chapter 7 for a detailed description of Polish String Notation.
tL. E. Allen, WFF W PROOF, Yale Law School, 1962.
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single definition. All links must be continuous so that there exists only one
objective after concatenation.

Reducing Sets

A type of definition that is difficult to convert into the metalanguage is
of the form:

A widget may be formed by the concatenation of one to six different
digits.

Now since a widget is constructed from digits, the choice of characters is
restricted to one each of the set:

0,1,2,3,4,5,6,7,8,9

That is, once a character has been used, it is no longer available as a com-
ponent of a widget. To permit such a choice, let us define a reducing set,
symbolized by square brackets, in which it is understood that once an
element has been used, the set is reduced by that element. That is, in
terms of set theory,

if N = {0,1,2,3,4,567.89)}
and ae N
then R= ~(NNa)

where N is the original set, a the chosen element and R the reduced set.
However, the reduced set becomes the set from which the next choice may
be made. Thus the choice of characters to construct a widget may be de-
scribed by the following algorithm:

if
N = {0,1,2,3,4,5,6,7,8,9}
then
(choice 1) aeN andRl =~(N Na)
(choice 2) b eRl and R2 = ~(R1 N b)
(choice 3) ceR2andR3 =~(R2Nc)
(choice 4) : deR3and R4 = ~(R3 N d)

and so forth.
Using this notation, one sees that a widget may be defined by the construct:

<widger> := {[0]1]2/3]4/5/6|7|8|91} ¢
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In use, this metadefinition operates as follows:

Step Choice Widget Remaining Set
0 0,1,2,3,4,5,6,7,8,9
1 3 3 0,1,2,4,5,6,7,8,9
2 7 37 0,1,2,4,5,6,8,9
3 0 370 1,2,4,5,6,8,9
4 1 3701 2,4,5,6,8,9
5 9 37019 2,4,5,6,8

This metalanguage definition will permit, for example, the definition of
PL/I DECLARE statements, wherein the attributes of a name may occur in
any order, but may not be repeated. In particular, consider the case where
in defining the file attributes, the programmer is permitted to define a file
option and/or a key option in any order, neither of which elements are
mandatory. The file attribute may be defined as:

<file attribute> := {[<file option>|<key option>]} z

Context Dependency

In the use of syntax constructs, the progression from the initial meta-
variable to the actual string of characters may be visualized as the progres-
sive substitution of metavariables by their components (which may contain
further metavariables) until all metaclements have been replaced by ele-
ments of the character set of the language. This may be further visualized
as the progression through certain branches of a tree structure wherein
each branch is independent of all other branches. However, this tree-like
structure with no interdependence of branches only exists for context free
languages. If the left-hand side of a construct contains more than one meta-
variable, then the production of the right-hand side is dependent on the
occurrence of more than one metavariable, and the language is said to be
context sensitive. In such languages, constructs of the type:

<a><b> = <a><c>

indicate that when the metavariables <a> and <b> occur in that order,
then the metacomponent <b> may be replaced by the metavariable <c>.
For a discussion and formal definition of context-sensitive languages, sce
Ginsburg.®

'S. Ginsburg, The Mathematical Theory of Context Free Languages, McGraw-Hill
Book Co., New York, 1966.
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SUMMARY

Summary

In this chapter we have described a metalanguage that will enable us to
define nonnatural languages, such as those used in both computing and
logic. However, we have only discussed the definitions with respect to the
formulation of a statement of the object language and not with regard to
the determination of the name of a string of characters with which we are
presented. That is, we have been given the key to the creation of a cipher,
but have not checked to see whether it is the same key that will allow us to
decipher the message.

Problems

2.1 Write definitions that will permit the construction of odd and even
integers.

2.2 In a FORTRAN program, the format of the input data is described by
the following statement:

FORMAT(F16.3,17,416,3X,6HOUTPUT)

Assuming that the read statement referring to this FORMAT contains the names
of six variables of the appropriate mode, write a set of constructs that will
describe the valid forms of preparing the input data documents.

2.3 A standard subscript in a FORTRAN array variable cannot exceed the
metaexpression cxv=k, where ¢ and k are integer constants and v is an integer
variable. Write a construct describing subscript expressions which contains a
minimum number of alternatives. That is, condense to a construct containing
a minimum number of occurrences of the metalanguage operator “or,” the
construct:
<sub exp> 1=

<c>*<v>{+l—}1<c>|<6>*<v>[<v>{+l—}1<C>|<v>|<c>
2.4 Write a construct that will describe a nonzero integer number.

2.5 Write a construct that will describe a sterling constant and consists of
the following concatenated fields:

(a) a pounds field that is a decimal integer,
(b) an oblique stroke (/),

(c) a shillings field that is a decimal integer less than 20 with no leading zero
or blank, and in which a zero field is written as —,

(d) an oblique stroke,
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(e) a pence field that is a decimal integer less than 12 with no leading zero
or blank, and in which a zero field is written as —,

(f) L

2.6  Find the algorithms that enable the prediction of the next letter in each
of the following sequences, and then describe these algorithms in terms of the
metalanguage such that infinite sequences can be generated from cyclic Roman
alphabets (i.e., A follows Z after each pass through the alphabet) :

(a) ABABAB...
(b) ATBATAATBAT. ..
(c) DEFGEFGHFGHI. ..
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The Reason for a Grammar

The purpose of expressing either a natural or nonnatural language in

a specific form is not primarily centered around our innate desire to
conform, but rather on the need to communicate. However, the success of
communication is measured by the amount of information that is gleaned
by the receiver. Thus, although a phrase may be grammatically correct
(such as convict an indulgent mandrake or a nice derangement of epitaphs’),
the listener or reader may gain little information, and therefore, for the
sake of conversation, reply in like manner.

The use of grammatically correct sentences is therefore merely a prelude
to the deconcatenation of the statement by the receiver. A grammar or
formalism that allows the generation of a statement which is not decon-
catenable or is deconcatenable in more than one way is syntactically am-

T Mrs. Malaprop, The Rivals, R. B. Sheridan.
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biguous. In natural language syntactic ambiguity is not always disastrous
since the meaning of a certain word may be derived from the context or
(as in a malapropism) from the knowledge of a similar word that would
make the phrase meaningful. Similarly, permissible errors that allow a
phrase to be formed without the loss of meaning are nondisastrous. As an
example, read any cablegram couched in terms that minimize the number
of words (and hence the cost of the message) while maintaining the mean-
ing of the message. Ambiguity resulting from the inability to deconcatenate
a phrase due to a lack in the definition of the scope of an adjective in a
natural language is similarly important, though many such ambiguities are
resolved by a knowledge of normal (as opposed to standard) usage.

Parsing

The deconcatenation or parsing of an accretion to determine the gram-
matical correctness of the statement is not only dependent on the individual
rules of the grammar or metalanguage, but also on the interrelations of
those rules.

The result of using a construct (that is, a set of syntax rules) is merely a
collection of symbols or marks which, through practice, can be decon-
catenated to allow one to extract the meaning (if not the intent) of the
message. If the same message were formulated from the same constructs
but with a different set of characters, then the message would be without
meaning since it could not be parsed by sight. On the other hand, an expert
decoder, such as a telegraph operator, can parse a message in a nonnatural
character set, such as morse code. Similarly, computer operators who work
continually with paper tape become adept at reading the holes in the tape.

As a language formalism must start with a definition of the character set
from which that language is built, so the process of parsing must commence
with that which exists and deconstruct to determine the type of statement
or, if the type is known, to determine the legality of the character string.

Let us consider the definition of a Well-Formed Formula (WFF) given
in Chapter 2 7 :

<WFF> := plq|r|s]N<WFF>|{CIAK[E}*< WFF><WFF>

1 In this chapter we shall allow the meaning “. . . is defined by ...” to be assigned to
the symbol :=.
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and instead of attempting to construct a legal WFF from this construct, let
us check the validity of a character string that is assumed to represent a WFF:

EAsKNpNrNg

Now a primary examination of this string shows that there exist four
<WFF>’s, which are immediately recognizable, that is, p, q, r, and s. Let
us replace these elements of the string by the component name <WFF >:

EA<WFF>KN<WFF>N<WFF>N<WFF>

Reading the string from left to right, we may note that the first character
is E, which, indeed, does appear in the construct within the alternative *

E<WFF><WFF>

However, the next two elements in the string do not conform to this pattern,
s0 a <WFF> utilizing the character E cannot be constructed at this point.
Using similar logic, one can see that the only legal <WFF>’s in the string
are those that involve the character N. If these are replaced by the com-
ponent name as before, the string is reduced to

EA<WFF>K<WFF><WFF><WFF>

Neither the E nor the A can be used to form a <WFF>, but one is recog-
nized at K, that is, K<WFF><WFF>, which after replacement reduces the
string to

EA<WFF><WFF><WFF>

The next two steps are obvious:
<WFF> := A<WFF><WFF>

so the string is reduced to EXWFF><WFF>, and since this conforms to
the definition of a <WFF>, the string is reduced to the single item

<WFF>

Thus we may conclude that the string EAsKNpNrNq is a legally constructed
<WFF>. This process is pictured graphically in Fig. 3.1.

Let us now consider the string CpAqrKs. The graph of the parsing of this
string is shown in Fig. 3.2. However, the string is not reduced to a single
item, there being left

<WFF>K<WFF>

which does not appear as an alternate construct in the definition of a
<WFF>. Hence we must conclude that CpAqrKs is not a legal <WFF>.

tThe type of parsing, starting from the string and attempting to construct the
syntactic tree back to the root component, is known as “bottom up” analysis.
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Problems

3.1 Assuming the definition of a <WFF> and using the graphical mode
of parsing, check the validity of the following strings, which are intended to be
Well-Formed Formulas:

(a) AKrpNq (d) NNAErpp
(b) CCsCNssr (e) NArKqEr
(c) ANpCpi (f) CANAprss
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3.2 Given

<x>:= AB|C
<y> 1= <x>{0[1]2[3]4|5]6]7|8|9} | <y><y>
: <z>:= {A]B|C} I <y>
determine the type (that is, <x>, <y> or <z>> of the following strings:

(a) CC2C3c4 (c) BSC7A0
(b) AAB1 (d) AA2B

Structure within Syntax

Although it is customary to define a language in terms of many con-
structs, this is really a matter of convenience. Given a large enough piece
of paper, a program could be defined in terms of the elemental characters
of the language, instead of breaking down the statement to many groups
and then rejoining those groups into a single definition. However, where
such groupings have qualities that are fundamental to the semantic nature
of the language, such a breakdown is both convenient to the formulation of
meaningful statements and to the compilation of those statements. Thus,
although the complete parsing of a string of symbols can only determine
the type of statement for which that string stands, the by-products of the
parse can be put to good use by the compiler generators.

Since a statement to be parsed is presented as a string of characters, the
analysis to determine the type of statement must attempt to reconstruct
the links between the characters, the components of the language (such as
variable names, etc.) and the statement. When the type of a statement has
been determined, or a statement can be of only one type, the reconstruction
of the linkages is comparatively straightforward, even when the accretion
is invalid. However, when a program is defined as a set of statements with
many alternate choices, an invalid statement of one type may be a valid
statement of another type.

Consider the formal definition of Dartmouth BASIC, giVen in Appendix
C. A BASIC IF statement is defined by the construct

<IF statement> := |IF<expression> <relation op>
<expression>THEN<line no 1>

where the simplest <expression> is defined as a <variable>, whose
simplest form is an <alphabetic character>, where a typical <relation op>
is the symbol =, and where a <line no 1> may be a three-digit number.
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The parsing of an IF statement would be of the form:

IF v = A THEN ? 1* i
at: at d d d
‘ , ! \\ * /
j v v Inl
/
/
ex ro ex
/
< IF statement>

where ac represents the meta component <alphabetic character>; v is
<variable>; d is <digit>; ex is <expression>; ro is <relation op>; and
Inl is <line no 1>.

Now if the intermediate conclusions of the parse are discarded as each
component is incorporated into a new component, then the one result of
the parse will be the conclusion that the string is a legal form of an </F
statement>. Providing the intermediate conclusions of the parsing algorithm
to the appropriate generator, can save the reanalysis of the string to extract
the data necessary for generating object code instructions and reserving
memory space for the variables. Also, since the <IF statement> is com-
posed of portions of other types of statement, it is likely that the generator
is not self-contained, but will call upon other generators to compile the
statement components. In particular, since <expression>’s are to be found
in many other statements, the generator for <expression> will not be the
sole property of the arithmetic statement generator, but will be a utility
routine available to all generators. Similarly, the IF generator can link to
the GO TO generator to compile the phrase THEN<line no 1>.

Consider an arithmetic expression composed only of simple variables.
Any pair of variables may be connected with any one of the operators
+,—,%,/ or 1, or a single operand may be prefixed by a unary operator.
However, no two operators may occur in juxtaposition, so that an infix
operator may not be followed by a prefix operator, except when the prefix
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operator and its operand are enclosed in parentheses. Similarly, parentheses
may enclose any operand to clarify or to define the hierarchy of calcula-

tion. According to these rules, an <expression> may be defined by the
sequence:

<prefix operator> := +|—|<null>

<infix operator> := +|—|/|*|1

<term> := <variable>|<term> <infix operator><term> |
(<expression>)

<expression> := <prefix operator> <term>

This sequence of statements permits the construction of only legal
<expression>’s and, in particular, does not permit the concatenation of
two operators without the presence of enclosing parentheses. Consider the
string A + (—B) * C, for which two parsings are shown in Figs. 3.3 and 3.4.
Both parsings conclude that the string is a legal <expression>, but one
of them does not represent the correct ordering of the operations. Thus if
the parsing is used to indicate the sequence of arithmetic operations, then

( —_

A +
t |
v io

) * C
r \

t

!

< expression>
FIGURE 3.3
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as terms connected by operators are recognized so that the sequence
<term><infix operator><term> forms another <term>, the internal
structure of the new <ferm>> is of no importance in the remainder of the
parsing. If a single value replaces the internal structure of that <term>,
the remainder of the parsing is unaffected. Thus once the string has been
determined to be a legal <expression>, a trace of the parsing will allow
the compilation of each <term> as it is recognized. Since the result of a
computation in the computer is placed in the accumulator (signified herein
as ACC), the first parsing of A + (—B) * C may be broken down to the
operations:

Operations
Generated String
A+ (—B)*C
B— ACC A+ (—ACC) *C
—ACC — ACC A+ ACC~*C
A + ACC— ACC ACC = C
ACC * C— ACC ACC

Disregarding the original string, let us now reconstruct the string from these
operations, parenthesizing each result:

Generated
Operations String
B— ACC (B)
—ACC — ACC (—(B))
A + ACC — ACC (A4 (—=(®)))
ACC * C— ACC ((A+ (=(B))) *C)

Reducing the number of parentheses to a minimum for readability, we
have the string (A + (—B)) * C, which is not equivalent to the original
string because of the hierarchical rules of arithmetic computation.

Consider the second parsing of the string and execute the same processes
as before:

Operations
Generated String
A+ (—B) *xC
B — ACC A+ (—ACC) xC
—ACC — ACC A+ ACC+C
ACC * C— ACC A + ACC

A + ACC— ACC ACC
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FIGURE 3.4
Generated
Operations String
B — ACC (B)
—ACC — ACC (—(B))
ACC * C— ACC ((=(B)) *O)

A + ACC — ACC (A+ ((—=(B)) *C))
(Deparenthesize) A+ (—B) =C

This latter result is obviously in accordance with the meaning of the original
string, but we have no algorithm that will define the correct ordering of the
compilation or the more useful parsing. However, give the same string to
a high school student and he will have no problem in determining the
correct order of computation, because he has been taught a set of rules
that define the order:

1. Evaluate parenthesized expressions first.
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2. Perform other operations in the order:
(a) Unary minus (discard unary plus)
(b) Involution
(c) Multiplication or division
(d) Addition or subtraction

With this ordering, the parsing should reveal groupings such that the order
of recognition (and hence the order of compilation) is equivalent to the
hierarchy of this set of rules. The development of a syntax that will permit
the construction of all valid statements and which, at the same time will
enforce the parsing by hierarchy of operators is complicated by the syn-
tactical inconsistency of the reverse sign operation (that is, unary minus).
By common practice, the syntax of the unary operator differs according to
the location of the operator in the string of characters. Since the concatena-
tion of two operators is not permitted, a unary operator and its operand
must be enclosed in parentheses within the body of an expression. How-
ever, if the same unary operator and operand occur at the left-hand end
of the expression, the parentheses may be omitted without the inference
that the whole expression is the operand of the unary operator. Thus,
though the following expressions are equivalent, the parenthesizing rules are
different:
—A+B
B+ (—A)

The following set of rules permit the construction of valid arithmetic ex-
pressions with some measure of hierarchy but without the correct hier-
archical placement of the unary operators:

<term> := <variable>|(<expression>)
<involution factor> := <term>|<term>1<term>
<multiply factor> := <involution factor>|
<multiply factor> {*|/}'<involution factor>
<expression> := <multiply factor>|{+|—}' <multiply factor>|
<expression> {+|—} <multiply factor>

If one uses this sequence of metalanguage statements as a guide to parsing,
the following string may be parsed as shown in Fig. 3.5;

—A+B
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FIGURE 3.5
which compiles to:
Operations
Generated String
—A+B
A — ACC —ACC + B
ACC + B— ACC —ACC
—ACC — ACC ACC

If the string is regenerated from the operations,

String
Operations Generated
A— ACC (A)
ACC + B— ACC ((A) +B)
—ACC — ACC (—((A) +B))
(Deparenthesize) — (A + B)
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This is obviously not correct; this single deficiency is sufficient to reject this
set of syntax rules as a guide to a parsing algorithm. It is left to the reader
to verify that parenthesized unary operators are extracted correctly, that is,
the expression A + (—B) is parsed in the correct order. However, if an
expression preceded by a unary operator will not parse correctly, then
neither will a parenthesized unary expression.

Adjusting the metalanguage definition to the set of statements:

()T <term> := <variable>|(<expression>)|{+|—}*<term>
(if)  <involution factor> := <term>|<term>1<term>
(mf)  <multiply factor> := <involution factor>|
<multiply factor>{*|/}*<involution
factor>
(e) <expression> := <multiply factor>|
<expression>{+|—}*<multiply factor>

This set of metalanguage statements does not satisfy the allowance that
a unary operator must be parenthesized within the body of a statement, but
may be unparenthesized at the commencement of the statement. In fact,
this set allows the concatenation of an infix operator and a unary operator.
On the other hand, as guidelines for parsing, this set of metalanguage state-
ments produces a satisfactory breakdown by hierarchy of arithmetic opera-
tors. Parsing the same example as before as shown in Fig. 3.6, the compiled
instructions are:

Operations
Generated String
—A+B
A— ACC —ACC + B
—ACC — ACC ACC + B

ACC + B — ACC ACC

Generated
Operations String
A — ACC (A)
—ACC — ACC (—(A))

ACC + B — ACC ((—(A)) +B)
(Deparenthesize) (—A) +8B

 The italicized letters are abbreviations of names to be used later.
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The Parsing Algorithm

The metalanguage used to define ALGOL, as conceived by Backus, was
a unidirectional system that fulfills its original purpose if it permits the
construction of only legal statements. However, the extension of the meta-
language to bidirectionality must be approached with trepidation, particu-
larly when the metalanguage statements are to be used as guidelines for
both parsing and compiler generator inputs. As shown in the previous
example, it is feasible that, under certain circumstances, the construction
of a metalanguage statement as a guideline for parsing may not coincide
with that for language definition. Moreover, though the metalanguage con-
structs may be sufficient for the construction of a legal statement, a similar
metalanguage statement used for parsing may not be sufficient to define the
parsing order.

Consider the example used previously to show the ambiguity of the
parsing of the simplest arithmetic expression definition:

A+ (—B) *C
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By the last definition, the marks +, *, and — must be part of the three con-
structs: <expression>+ <multiply factor>, <multiply factor>*<involu-
tion factor>, and — <term>, respectively. Thus the parsing which deter-
mines that the string is a legal <expression> is shown in Fig. 3.7. However
the parse shown in Fig. 3.8 could have occurred where a link cannot be

+ ( - ) *

-~ tf— o— O

|
|
+

e

~

-~

m_‘.—gh.‘_‘::.‘_— - —— < —g— >
N ———

R

—— S, e . e ()

T~

< expression >
FIGURE 3.7
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FIGURE 3.8
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forged between the <expression> to the left and the <involution factor>
that occurs to the right of the mark *. That is, the components to the lef
and right of the * sign are not in accord with the construct. While ar
<expression> can be converted into a <multiply factor> by the additior
of parentheses, these do not exist in this string in the correct position, anc
therefore by this parsing one must conclude that the string is not a legal
<expression>. The obvious difference between these two attempted pars-
ings is the order in which the components of each construct are chosen.
Hence, if we can determine and define an ordering for the parse, this
ambiguity may be overcome.

The simple rules for evaluating an expression,
1. Evaluate parenthesized expressions first.

2. Perform other operations in the order:
(a) Unary minus
(b) Involution
(c) Multiplication and division
(d) Addition and subtraction,

were used to determine the sequence of the statements in the metalanguage
definition of the <expression>; the ordering of the recognition of the com-
ponents of an <expression> must follow the same order. However, in a
parse one must add the recognition of a <variable>:

<variable>
<term>
<involution factor>
<multiply factor>
<expression>

Thus if a component highest in the list is formed as soon as its subcom-
ponents are available, then the hierarchical properties of arithmetic state-
ments will be maintained. Further, the intrinsic marks of a component,
once recognized, can allow the prediction of the existence of the individual
components. For example, in a single scan, a skeletal parsing may be formed
for the string A + (—B) * C in which predicted components and subcom-
ponents are determined as shown in Fig. 3.9. In this scan all <variable>s
have been recognized, and so a second scan must attempt to forge links
between the <term>’s, the <variables>’s, and other marks. Two potential
<term>’s exist, but it can be seen that one—that is, the one incorporating
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A + ( —_ B ) * C
y
/t
y
t
4
e
} ,
t
I/
€ mf /if
\mf

FIGURE 3.9

the parentheses and an < expression>—envelops the other; thus that of
highest stature (with regard to the position on the page) or earliest pre-
diction must be resolved first. Extracting this substring from the string,
together with its skeletal parsing:

€ w———

e
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THE REASON FOR A GRAMMAR

shows that a link must be forged between the < variable™> and the <term>,
which is the component of the predicted resultant <rerm>. From the defini-
tion <term> := <variable> it is obvious that a link can be formed
directly between the required component and the existing result.

The second level <term> may now be determined from the existent string
and components:

N g

Following through the set of metalanguage constructs, there is a set of links
connecting a <term> and an <expression>

<term> — <involution factor> — <multiply factor> — <expression>
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which does not require any additional components. Thus the links in the
parsing diagram are

- —— " ——

t
o
i

|
|

~n

m

e

~

Now, with all <term>’s determined for which the components are known,
the next level requires the resolution of <involution factors>s. None exist
due to the absence of 1 marks, thus the next level will be <multiply factor>.
The one predicted <multiply factor> requires the determination of a left-
hand <multiply factor> and a right-hand <involution factor>, whereas
the closest known components on either side are a <term> and a
<variable>. However, links exist that require no other components:

<term> — <involution factor> — <multiply factor>
<variable> — <term> — <involution factor>
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Thus the links to the < multiply factor> can be determined.

L]
I
NS

No other <multiply factor>s were predicted, and the sole remaining pre-
diction is an <expression>, which must be formed from the diagram:

v + mf

e mf

N

The right-hand component of the <expression> must be a <multiply
factor> and, in fact, such does exist in that position, so that link can
be inserted immediately. On the left, a link must be found between a
<variable> and an <expression>, that is,

<variable>— <term>— < involution factor>—
<multiply factor>-><expression>

56



THE PARSING ALGORITHM

Hence we have the diagram

e

which contains but one result for which there are no further links to any
other component.

Where there exists at any one time a set of predictions of equal hier-
archical level, the choice of which to resolve first must again be determined
by convention that is built into the parsing algorithm. In particular, con-
sider the string

AR

e mf e mf

ANV N

e e

Convention states that a subtraction operation requires that the object to
the right of the — sign be subtracted from the object on the left. This fact
was built into the metalanguage definition of an <expression>, wherein
a <multiply factor> may be subtracted from an <expression>; since a
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<multiply factor> can be formed from a <variable> without the addition
of other characters, then individual <variable>s can be subtracted from an
<expression>, but not vice versa. Thus, in terms of the possible links be-
tween the metalanguage statements, when two <expression>s occur at
the same level, they can only be connected by forging a link between
either an <expression> and a <multiply factor>, or a <multiply factor>
and an <expression>. However, an <expression> cannot be linked to a
<multiply factor> without the addition of parentheses, whereas a <multiply
factor> has a direct link to an <expression>, which involves the con-
catenation of no other components. Thus, in the above example, the
<expression> predicted by the first — sign (left to right scan), which
has a <multiply factor> as its right-hand component, can connect with
the predicted <expression> of the second — sign. Hence the skeletal dia-
gram can be modified to the form

C

|

A —

———
< ——— W

e\e/mf

with the assurance that the links shown are the only possible ones. Since
the same convention holds for other noncommutative operations, it is true
in this particular set of metalanguage statements that the links must be
constructed as soon as the components are recognized, and that when there
is a possibility of an element of the string (or of a resulting component)
being linked to two predictions, the link leading to the highest undefined
component is to be formed first. Thus in the above example the symbol B
could have been linked to either a <mulriply factor> or an <expression>,
but by the rule that the link should be forged to the undefined component
at the highest level, the <multiply factor> is the first choice.

Problem

3.3 The set of syntax rules given on page 48, force the analysis of the string
—X1Y to be parsed effectively as ((—X)1Y). Amend the syntax analysis rules
to force the parsing into the form (—(X1Y)).
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Acceptability Tables

Ingerman T advocates the use of acceptability tables to determine whether
a link can be formed between a given component and a goal. Such a table
does not take into account the individual components of a construct, but
rather declares that some link can be found. An acceptability table is formed
by tagging the rows of a matrix by the names of the components of the
metalanguage and the columns by the components and results. The first
step is then to indicate in the appropriate element in the matrix where
each component is used in the construction of the results. For the meta-
language constructs defining an <expression>, given on page 48, the
initial table is

resultants

t if mf e
( 1
) 1
1 . 1
-+ 1 1
- 1 . 1
* 1
/ . 1
% 1
t 1 1
if 1
mf . . .
e 1 . . 1

where 1 represents that the component is an element of the result (that is,
there is a link between the component and the result) and where a period
indicates the absence of a direct link. A period is used merely to give some
clarity to the table, it being used for the mark 0, which one would expect
to find in a binary matrix. This table shows that a component is an essential
part of a result, but does not differentiate between the various alternatives.
For example, the column under a resultant does not indicate that all the
components are necessary to form the resultant.

Now since a <variable> is a component of a <term> (that is, there is
a link from < variable> to <term>), and since <term> links with <in-

t P, Z. Ingerman, 4 Syntax Oriented Translator, Academic Press, New York, 1966.
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volution factor> (see row 9, column 2), then there must be a link from
<variable> to <involution factor>. This link must now be entered in the
table. To determine all the links in the table, a simple process of perform-
ing a Boolean OR operation between various rows of the table can save
the effort of chaining through each metalanguage statement. For example,
row 3 (1) shows that there is a link between 1 and the <involution factor>,
while row 10 (if) shows a link between this component and a <multiply
factor>. When the result of an OR operation between these two rows re-
places the original contents of the highest row (lowest row number) the
link between 1 and <multiply factor> is included in row 3. Thus row 3
becomes
1 if mf e
) . 1 1

The up arrow is now connected to the <multiply factor>, which is itself
connected to an <expression>, which is in turn connected to both itself
and a <term>. Thus to construct all the links emanating from row 3, it is
necessary to operate on row 3 and each other row for which a 1 appears
under the appropriate heading. In the particular case of row 3, this eventu-
ally entails the operation:

row 3 =row 3 A row 10 A row 11 A row 12

so that row 3 becomes:

T 1 1 1 1

In fact, as the reader may verify, the linkage table for the syntax rules
of an arithmetic expression contains no zero elements since the cyclic
(iterative) nature of the set of constructs allows each component to be
linked to every result. This is shown in another way in Fig. 3.10, where
the arrows indicate links. Not all acceptability tables are as dense as that
for the links between the components and the results of an arithmetic ex-
pression; but, in any case, even knowing that it is possible to construct a
linkage between an object or component with a result, we cannot deter-
mine directly from the table that all components are present in the string to
form a result, without reference to the metalanguage statements.
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ENTRY
J J
t « v | (e) | {+|-)4
’ v y )
if <« t | t 1
¥ ¥
mf <« if | mf {*|/}* if
¥ N2
e « mf I e {+]-} mf
1
{
EXIT
FIGURE 3.10
Problem

3.4 Parse the following strings:

(a) (—(—(=(=(A)+(BxC)))))

(b) A—B*Cx(—A*X)/X*(O—R*(O—R*(T—R)))
(c) F=G/((T—M)/$)

(d) —At(A/B—C)—D+E

(e) (A—(B—(C—D/E)))

A Specialized Sieve

The determination of statement type and the extraction of language com-
ponents by parsing, using the guidelines of a syntax definition may be ex-
haustive and generally applicable, but it is inefficient compared to a specially
designed analyzer. In a parse, the whole string of characters must be
scanned regardless of the redundancy of this scanning. For example, a
BASIC READ statement has the syntax definition:

<READ statement> := READ <variable>{,<variable>}'(’)°
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and to determine the validity and type of accretion, the whole string must
be examined. However, due to the nature of all BASIC statements, the
examination of only the first three characters will enable the type to be
determined. The validity of the statement can then be checked as a by-
product of the extraction of the variable names and during the subsequent
compilation of the object code.

A close examination of the syntax of a language may reveal that each
statement or class of statements has distinguishing marks that set it apart
from all others. In other situations, the relationships of the marks within
the string to each other determine the type of statement. In particular, the
marks that are essential to a statement, such as a comma or parentheses,
may be more reliable than variable components that are constructed from
other marks and are not essential to the legal construction of a statement.

For example, consider the statements of FORTRAN II. Although
FORTRAN is generally taught as having two basic types of statement,
that is, declaratives and executables, at compilation time the statements may
better be classified as arithmetic and nonarithmetic. It would seem at first
glance that the fundamental difference between these types of statements
would be the presence of an = sign in arithmetic statements and the ab-
sence of that mark in other statements. However, an = sign is a standard
occurrence in a DO statement, an indexed I/O statement, and a FORMAT
declaration, for example:

DO311=JK,L
READ 100, A, B, (C(1), | = 1, 15, 2)
FORMAT(3HA= , 15)

Thus the = sign is not a unique characteristic of the arithmetic statement;
but if an = sign is present, the set of possibilities for the identity of that
statement has been reduced considerably, By observing the location of the
= sign, one may see that in the cases of the READ statement and this par-
ticular FORMAT statement, the = sign is contained within a set of facing
parentheses, whereas the = sign in both the arithmetic and DO statements
is unparenthesized. While the = sign in an indexed 1/O statement must
have surrounding parentheses, this is not a requirement in a FORMAT state-
ment. Consider the statement:

FORMAT (5HX) =(Y)

Another distinguishing mark in a DO statement, which may be present in
arithmetic and FORMAT statements, is the comma. In the DO statement the
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comma is unsurrounded by parentheses, whereas in an arithmetic state-
ment the comma can only occur within a subscript and is therefore always
surrounded by parentheses. FORMAT has no such requirement.

Since FORMAT statements may contain unstructured character strings of
any length (according to USASI specifications), and the characteristic
marks of the other statements could occur within the FORMAT statement,
this statement must be removed from the list of possibilities at the outset of
the sieve. This is achieved by using the only known characteristics of the
FORMAT statement, that is, the characters F, O, R, M, A, T and (, as the first
seven nonblank leading characters. Once this statement has been eliminated,
the other statements that may contain an = sign can be distinguished from
each other by the following decision table.

Mark

Il

Arithmetic statement U pt
DO statement U U
Indexed 1/0 statement P

T if present

P = parenthesized
U = unparenthesized

The other FORTRAN II statements may be recognized if their keywords,
which must always occur in the leading position in the statement, are
examined. The list given in Table 3.1 shows the characteristics within the
keyword of each statement; the significant characters are upper case, while
those that do not materially assist the sieve are lower case. Although the
syntax of FORTRAN II insists that the keywords must be present as de-

TABLE 3.1
ACcept EQuivalence PAuse Real FUNCTION T
ACcept Tape EXternal PRInt SsTop
ASsign Function PROgram Subroutine
cAll Go to PUnch Type INTEGER T
COMmon Go to ( PUnch Tape Type REAL T
CONtinue IF ReaD Type
Dimension INteger ReaD Tape Write
ENd INteger FUNCTION T Real write Tape

 These keywords require the total identification of the second word since the same key-
word with one component can have a variable name in this position.
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fined, a sieve that only checks the significant characters and discards the
other characters in the keyword can speed the process. In such a situation
invalid keywords can be used without disturbing the compilation. In fact,
knowledgeable programmers can concoct their own brand of FORTRAN
keywords. For example, one programmer consistently used DAMNITALL as
the keyword for DIMENSION.

In FORTRAN 1V, where many new statements are added, a major diffi-
culty arises from the inclusion of Hollerith constants in several statements.
Thus the characteristic marks of an arithmetic statement, a DO statement
and an indexed 1/0 are no longer unique. For example, the following two
statements are, respectively, a legal DO statement and a valid arithmetic
(replacement) statement:

DOIl =1,31,2
DO1l = 5H,3,10

Similarly, the following are a legal IF statement and a valid arithmetic
statement:

IF(1 —3H)=()1,31,2

IF(1 —3) =5H1,32

Thus if a statement contains the requisite marks, the keyword should also
be examined to distinguish between possible statement types. However, the
presence of the requisite characters does not determine the type, but merely
raises the possibility. If an arithmetic statement containing a Hollerith con-
stant is restricted to be a simple replacement statement, as is recommended,
then the DO statement may be distinguished by the following pointers:

(a) Since no constant (and in particular a Hollerith constant containing
an = sign) may occur to the left of a replacement sign as in an arithmetic
statement or as in the index of a DO statement, then the first = sign must
be cither the replacement sign in an arithmetic statement or the delimiter
between the index variable and the initial parameter in a DO statement.

(b) When the first = sign has been located in a left to right scan, the
first variable, function or constant in an arithmetic statement will be de-
limited by a parenthesis, an arithmetic operator or the end of the statement,
whereas the first delimited in a DO statement must be a comma.

An = sign occurring in an IF statement is not mandatory, and thus no
rule can determine the first distinguishing mark after the = sign. Thus, if one
assumes that a particular statement is an IF statement (after checking the
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SUMMARY

leading two characters) and this turns out to be a false assumption, an
attempt can be made to compile the statement as an arithmetic statement.
If this fails, the statement is not valid.

Summary

The analysis of nonnatural language statements by the use of parsing to
determine the validity and type of statement can be achieved by the use
of a generalized parsing routine or by a specific analyzer. The use of a
general routine has the advantage that with the input of a language defini-
tion, there is no restriction on the language to be analyzed, and a single
analyzer can perform the same task for many languages. Further, the inter-
mediate results of the parse, if saved, can serve as indicators and pointers
to the compiler generators. However, since parsing with respect to a set
of syntax rules (which is akin to an interpretive process) must examine
every component of the string to be analyzed, advantage cannot be taken
of the inherent properties of each statement type.

The choice of analyzer, therefore, must be determined by the environ-
ment into which the compiler is to be placed.
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SYMTAB—The Symbol Table
and Associated Routines

The purpose of a symbol table in a compiler or an assembler is to

collect data from the source statements, analyze it for pertinence,
assign object-time-storage areas, and to return data to the calling generator
for the assembly of the target language instructions. The success of the
symbol table routine depends on the information it receives from the call-
ing generator and the type of data that is expected. For example, since the
symbol table routine generally examines a source statement without know-
ing the context, it must handle seemingly similar data in differing manners.
In particular, a statement identifier in FORTRAN can easily be mistaken
for an integer constant or in PL/I for a variable.

The first task of the symbol table routine must be to extract the elements
of the language. Basically, this can be broken into two subheadings: the
extraction of (a) numeric constants and (b) symbolic data.
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Let us first consider the extraction of integer data from a string of
symbols. When any piece of data is to be extracted from a source state-
ment, the first consideration must be given to the delimiting characters of
that data. As the source statement is scanned from left to right, the first
character will generally give a clue to the type of element in hand (for
example, in ALGOL and FORTRAN where a variable name is constrained
to begin with an alphabetic character), but the last character of the element
cannot be recognized until after it has been passed over and a delimiting
character is noted. Since an integer constant may contain only digits, any
nonnumeric character will be a delimiting character. However, any leading
blanks must be disregarded as must internal blanks. As opposed to an
object-time data image, it is normally assumed that internal blanks in a
portion of a source statement will be disregarded, though some languages
insist on the presence of a blank in certain locations.

The Extraction of Language Elements

If the source statement has been assembled into an area known as CHI,
and there exists a word known as CHINXT, which contains the address of
the character in CHI currently under consideration, the SYMTAB routine may
start with that character and move toward the right. On returning from
SYMTAB to the calling routine, CHINXT will contain the address of the de-
limiting character. Fig. 4.1 shows the extraction process for an integer.

Since this extraction routine can be useful to other routines than SYMTAB,
provision must be made for more than simply the collecting string of char-
acters. Similarly, the overzealous transmutation of the string, for example,
to the internal representation can detract from the string’s general useful-
ness. The uses to which a simple integer extraction could be put would
include:

(a) extracting .the logical unit number from a FORTRAN READ or
WRITE command,

(b) extracting the switch number from an IF(SENSE SWITCH i) state-
ment,

(c) extracting the display digits from a PAUSE or STOP statement, and

(d) extracting numeric field widths and other specifications in FORMAT
statements.

For example, the specification widths in a FORMAT statement may be ex-
tracted by using this routine repeatedly. Further, since neither part (w or d
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in an F or E specification) should exceed two digits; if the routine returns
the number of digits extracted, then a check for legality can be made.

If the terminating character of an integer extraction routine is H, one
may assume that the item is a Hollerith constant. Thus the constant picked
up by the routine is to be used by the generator as the count of the char-

CLEAR

RECEPTION
AREA PLACE DIGIT IN
J-TH CHARACTER
+ OF RECEPTION AREA
J=1 A '
INCREMENT J

INCREMENT
CHINXT Note: It is assumed that each

statement has a terminating

character that is neither numeric

nor blank

RIGHT
JUSTIFY
RECEPTION
AREA

FIGURE 4.1 Integer Extraction Routine (INTEX)
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acters to be stored as the Hollerith constant. The characters to be extracted
can then be extracted irrespective of their value. A constant such as 5 H,1,38
would be extracted as ,1,38.

The extraction of a decimal number (or REAL number in FORTRAN)
involves more testing than for the extraction of an integer number since the
number of valid forms is greater. Further, the internal representation of a
real number is not a simple rearrangement of the source data, but a collec-
tion of three parts: the integer part, the fractional part, and the exponent.
In a decimal machine, these parts may be collected simultaneously, whereas
in a binary machine, they must be kept separate in BCD form until a con-
version from external to internal mode can be accomplished. However, if
the compiler has a target language, such as an assembly code that accepts
numeric data in external form, the task of conversion may be either post-
poned or handled by some other system. We shall consider the following
techniques:

(a) source data to decimal internal real mode with a biased exponent
and left-justified mantissa,

(b) source data to integer part, fractional part and exponent in external
mode, and

(c) external mode to internal binary.

First consider that a real number may be defined as:

<simple real no> := <integer>.l<integer>.<integer>[.<integer>
<exponent no> := <simple real no>E<sign> <integer> |

<integer>E<sign> <integer>
<real no> := <simple real no>|<exponent no>

The significant characters in a real number are

(radix point)
E (the symbol for “times 10 to the power’’)

and the right delimiting character, which in an assignment statement will be
either an operator or the end of the statement. In a logical IF statement the
delimiter may be either an operator or a right parenthesis, or even a second
decimal point (as in IF(0.0.NE.X) ...). In a DATA statement list the de-
limiter may be a comma. :

69



SYMTAB—THE SYMBOL TABLE AND ASSOCIATED ROUTINES

CLEAR
RECEPTION
AREA

'

EXP =0 *

J=1 _
INC = +1 A INC=—1

INCREMENT

CHINXT

ERROR **

BLANK
OR ZERO?

EXP =
INCREMENT EXP + INC

CHINXT

Notes:

* If the exponent is to be INC=0
biased, EXP should be set to the
bias.

** By definition, the first
nonzero digit must be a digit or
the radix point. This will eliminate
the validity of E 4 10 as a real
number.

T This test finds the first non-
zero nonblank character.

#This test takes care of zeros
before the leading digit but after
the radix point.

FIGURE 4.2 Real Number Extraction Routine

In extracting a real number from a source statement, the technique of
handling a zero must be considered in one of three manners:

1. After a leading nonzero digit, it should be treated as a digit.
2. Before a leading nonzero digit and prior to the radix point, it should

be ignored.
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Notes:

INC 1s the amount to be added
to the exponent as each digit is
encountered before a decimal
point, or to be subtracted for

PLACE DIGIT IN J-TH
POSITION OF
RECEPTION AREA

* every leading zero after a decimal
point but before a leading digit.
J=J41 EXP is the exponent of the real
EXP — EXP numl?er with a normalized
XP o+ INC mantissa; that is, the mantissa

has a nonzero leading digit and is

A + assumed to be purely fractional.

INCREMENT
CHINXT ‘ INC=0

ERROR *
Notes:

* A second decimal point has
been found. This may not be an
error in a logical IF statement.

T NUMERIC here will include
embedded zeros.

FIGURE 4.2 (continued)

3. Before a leading nonzero digit but following the radix point, it
should be ignored, but with an adjustment of the exponent.

Figure 4.2 charts the routine for extracting a real number from a source
statement and converting it to internal decimal real mode. For the purpose
of extracting a real number and maintaining the separate identities of the
three parts, an alternative routine may be organized that utilizes the integer
extraction routine. This is shown in Fig. 4.3.
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i Notes:

This section of the routine
INCREMENT handles only the exponent part of
CHINXT the real number.
INT is the result provided by
INTEX.
@ NO
YES
SAVE SIGN SIGN = +
INCREMENT
CHINXT V

EXP = EXP — INT EXP = EXP + INT

i

FIGURE 4.2 (continued)

These extraction routines have merely extracted numbers from a string
of characters in the source statement and stored these numbers in their
unadulterated form in a set of special bins. However, the form in which the
data are read into the computer from the source document (tape, card, etc.)
is not, generally, the form in which the information is to be manipulated at
object time. For example, in binary machines the digits (0-9) can be
represented as

72



THE EXTRACTION OF LANGUAGE ELEMENTS

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
PERIOD

INTEGER 0 NO

PART =0
YES

STORE INTEGER PART

v SKIP E EXPONENT

SKIP RADIX POINT

PART =0

FRACTIONAL
PART =0 STORE
NUMERIC EXPONENT
PART
Notes:
STORE * INTEX without right justification.
FRACTIONAL CHAR stands for CHARACTER.
PART

FIGURE 4.3 Real Number Extraction without Conversion
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However, multidigit decimal numbers cannot be represented by the direct
translation of digits according to the above table. For example, the decimal
number 14, does not code directly to 000101005, but rather to 00001110,.
To restrict the internal code of a character to merely 4 bits will restrict the

TABLE 4.1 INTERNAL BINARY REPRESENTATIONS OF EXTERNAL CHARACTERS

External Internal Internal
Character Octal Binary
A 21 010001
B 22 010010
C 23 010011
D 24 010100
E 25 010101
F 26 010110
G 27 010111
H 30 011000
1 31 011001
J 41 100001
K 42 100010
L 43 100011
M 44 100100
N 45 100101
o 46 100110
P 47 100111
Q 50 101000
R 51 101001
S 62 110010
T 63 110011
u 64 110100
\ 65 110101
w 66 110110
X 67 110111
Y 70 111000
z 71 111001
0 00 000000
1 01 000001
2 02 000010
3 03 000011
4 04 000100
5 05 000101
6 06 000110
7 07 000111
8 10 001000
9 11 001001

74



CONVERSION OF NUMERIC VALUES TO INTERNAL MODE

allowable number of characters to 16, whereas in general we will wish to
represent at least 48, or even 64, characters. For programming ease, most
computers are arranged so that the memory words may be broken up into
octal digits since any binary number can be converted to an octal number
if the bits are merely grouped into sets of three, to the left and right of the
radix point. That is, 011,010,110.101,110,110, is equivalent to 326.5664.
Thus if three bits is the basic unit (byte) of information in the computer,
two bytes or six bits will be a logical group to represent the whole character
set of the machine, as in the set shown in Table 4.1.

Conversion of Numeric Values to Internal Mode

If one possesses a computer that stores its data in purely decimal form
and that performs decimal arithmetic, the conversion from decimal to
binary mode can be expressed as a simple algorithm. However, if one
possesses such a machine, the need to convert from decimal to binary is of
less importance than with other computers. As an aid to the consideration
of conversion techniques, let us first consider the conversion from binary to
decimal mode. Since both number systems are positional, a bit in a given
position (with relation to the radix point) can be translated to its equivalent
decimal number. For example, the presence of a bit three places to the left
of the radix point may be converted to 410; a bit in the sixth place may be
converted to the left to 32,,; and a bit in the third position to the right may
be converted to 0.125;,. Thus one may translate a binary number to decimal
mode by looking the positions of the bits up in a table and adding, in
decimal mode, the results found in the table. For example, 10110111, is
equivalent to 1x27 + 0x26 + 1x2% + 1x2* + 0X2% + 1Xx22 + 1x2 +
1x20 =128 + 0+32 + 16 + 0+ 4 + 2 + 1 = 1834,.

Problem

4.1 Convert the following binary numbers to decimal mode:

(a) 110110 (c) 011011
(b) 101010 (d) 100100

By a similar technique, decimal numbers may be converted to binary mode:
Very simply, find the largest decimal number that is an integer power of 2
and is smaller than the number to be converted, place a unit in the binary
field in the equivalent position, subtract the power of 2 from the original
decimal number, and repeat on the remainder until it is reduced to zero.
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Consider the decimal number 173;,:

173
—128 B}
— = = 1X27
45
—-32
——= = 1x25
13
— = 1x23
=4 k22
1
-1
— = 1x20
0

Thus the binary equivalent of 173, is 1X27 4+ 1x25 + 1X2% 4+ 1x22 +
129, or in positional form, 10101101,. Although this conversion process
is correct, it is somewhat clumsy.

Expanding the positional notation of a binary number to its power series,
one may write a binary number in the nested form:

(Cov i (X2 4+ by1) X2 + bys) X2 4 ... by) X2 + b)) X2 + by

where b; is the (i+1)th digit to the left of the radix point.
Now if D is the decimal number to be converted into binary mode, one
can write:

D= ((..((baX2+by_1) X2 4+ by_3)X2 4+ ...bs) X2 + b;) X2 + by
Dividing both sides of this equality by 2 in integer mode gives:
D'+ R =(...((byX2+ by 1)X2 4 by_s)X2+...b3)X2+ by + by

where D’ is the integer quotient of the left-hand side, and R is the re-
mainder, which obviously will be either 1 or 0. The remainder of the divi-
sion of the left-hand side must be the same as the remainder on the right-
hand side, that is, b,. Thus the low-order digit of the binary equivalent may
be determined by a simple division by 2 in decimal mode. The quotient of
the division (D) is equivalent to the higher order bits in the binary number,
and thus continued division and extraction of the remainder will produce
the whole binary equivalent. Such a process is shown in Fig. 4.4.
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—-2—-=86+1

—82—6—=43+0

522_21+1

221=10+1 v vy
10101101

122= 540 4 4

5o

2 =140

-;—: 0+1

FIGURE 4.4 Decimal to Binary Conversion by Division by Two

While this technique seems simple and straightforward, it can only be
used with a decimal machine since the division by 2 of decimal numbers
must entail the borrowing of tens. Further, in a binary machine the internal
representation is not a correct representation of the decimal number. For
example, consider a 4-bit representation of digits. The source language in-
ternal representation of 1731, will be 000101110011,,,. Now dividing by
2 is equivalent to a shift to the right of one place, so dividing the BCD
representation by 2 gives a quotient of 0001011100154, with a remainder
of 1 (which is shifted off). This quotient is equivalent to the number

0(11)940

where the middle digit is greater than 10. In reality, a 4-bit internal repre-
sentation can only truly represent a hexadecimal number (base 16) in
which a division by 2 would produce the correct quotient and remainder.
Thus, in terms of the previous algorithm, unless special techniques are used
to divide by 2 in decimal mode using hexadecimal or BCD data, the
algorithm is inapplicable to a binary machine.

77



SYMTAB—THE SYMBOL TABLE AND ASSOCIATED ROUTINES

Such an algorithm may be developed, though it is extremely tedious and
time consuming. For example, a BCD character using six bits to allow the
acceptance of all characters in the language will contain at least two lead-
ing zeroes which may be made use of in the following algorithm. If an
integer number is maintained in BCD input form, then a shift right is almost
equivalent to a division by 2, and any bit shifted off the right-hand end is
the true remainder. Consider each BCD character to be a separate entity
which is shifted right as a whole. Then the movement of a low order bit of
an internal byte to the high order position of the next lower byte is an
indication of adding five (5) to that lower byte. Thus if we add 5 to each
byte in which a high order bit has occurred, and remove the high order
bit, we can simulate the borrow feature of a decimal divide. This process is
shown in Fig. 4.5.

Digits

Shifted Off
1734, 000001 000111 000011
Shift Right 000000 100011 100001 1
Remove H/O bits and add 5
as appropriate 000000 001000 000110 1
Shift Right 000000 000100 000011 01
No H/O bits occurred 000000 000100 000011 01
Shift Right 000000 000010 000001 101
No H/O bits occurred 000000 000010 000001 101
Shift Right 000000 000001 000000 1101
No H/O bits occurred 000000 000001 000000 1101
Shift Right 000000 000000 100000 01101

Remove H/O bits and add five 000000 000000 000101 01101

3 shifts right 000000 000000 000000 10101101

FIGURE 4.5 Conversion from BCD to Binary Using a Simulated Decimal Division by Two
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This technique wastes time, but it does show that decimal division of a
BCD string is possible. It must be anticipated that the number of one-bit
shifts is equivalent to the word size and that the number of tests after each
shift to recognize the existence of high-order bits is equal to the number of
BCD characters to be translated. Also, a computer with bit and byte manipu-
lation instructions is necessary.

It should be recognized that each BCD byte is a true representation in
binary mode of the decimal digit and on its own can be treated as a binary
field. Now a decimal number is merely a representation of the true number,
the position of each digit implying its power of 10 exponent. That is, 253,
is a representation of:

2x10% + 5% 10 + 3x10°
If a decimal number takes the form:
dudy_1dn_z . .. dodidy
where
<d;> := 0|1|2|3|4|5/6|7/8|9
then the number can be written in nested form:

(CC... ((dpx10 4+ dp—1) X100 4+ d,_2) X 10 +
...d2) X10 + dy) X10 + do)

If each BCD character of the input decimal number is stored in a separate
word in memory, then the binary equivalent may be constructed by evalu-
ating the nested polynomial from left to right. For example, the decimal
number 104 will be stored in memory in separate words as:

d» 000001
d; 000000
dy 000100

The binary equivalent of decimal 10 is 1010,; so evaluating the polynomial:

ds X 10 = 0000001010
+d; = 0000001010
x 10 = 00000001100100
+ doy = 00000001101000
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that is, 104, is equivalent to 1101000.. As a check, the result may be
converted back to base 10. In terms of base 10 numbers, the binary number
is the summation:

26 4 25 4 23 = 64 + 32 + 8 = 104y,

Problem

4.2 Assume that the following decimal numbers are input, so that each digit
is stored in a separate word in its BCD equivalent coding, and convert the follow-
ing to binary mode:

(a) 93 (e) 577
(b) 176 (f) 19
(c) 256 (g) 901
(d) 1000

We shall not consider the conversion of fractional numbers from decimal
(or BCD) to binary since a little internal processing before conversion can
always ensure that each number is primarily converted to an integer part
and an accompanying exponent. Thus the number can be extracted in
integer form, the exponent being supplemented by the appropriate amount.
Thus during the extraction of the number from the source document, the
initial conversion may be accomplished so that prior to conversion to
internal mode (probably binary) the number appears in the form of an
integer part and an exponent. However, the external base or radix is not
the same as that for the internal storage, and further, it is usually found
that mantissas are stored as pure fractions. Therefore although the initial
conversion produces an integer and an exponent of, for example, base 10,
the subsequent conversion must be to a pure fraction and an exponent of
base 2. The conversion from an integer of base 10 to a fraction of base 2
is not difficult. If one converts from the external integer to the internal
mode integer, internal conversion to a fraction may be accomplished merely
by supplementing the 2’s exponent by the amount the radix point is shifted.
At this stage of the algorithm, the number 0.104 would be converted through
the following steps;

0.104 = 104. x 10—2
104. X 10—3 = 1101000.; X 10—3
1101000., X 10—3 = 0.1101000, X 27 x 10—3

One problem still remains: The number now contains two exponents which
are not in the same mode. That is, the multiplying factor of base 10 must
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be converted to base 2 with the appropriate adjustment to the mantissa.
Suppose one is given a multiplying factor of 10" where n is an integer by
definition. This is to be converted to the multiplying factor 2™ where m is
not necessarily an integer. If

10" = 2m
then

log,10" = log,2™
that is

nlog,10 = m

Now 7 can be converted to binary by the techniques described above and
then multiplied by the constant log10 in binary mode. However, in general
m will not be an integer and may be represented in the form (i + f) where i
is an integer and f is a fraction. If the original decimal number is written as

d x 10"

then its binary equivalent is b X 2¢+7, that is, b X 2¢ X 2/. Thus before
the number can be stored, the factor b X 2/ needs to be evaluated since
the exponent must be an integer. This may cause some consternation as one
would not expect a compiler to include a routine for such a complex opera-
tion as involution unless the operation is a load-and-go one with the com-
piler, library routines and compiled program resident together. As an alter-
native, this process may be simulated by a table look up procedure based
on the powers of 10.

For example, FORTRAN 3600 (for the CONTROL DATA 3600)
contains a table of the integer and fractional exponents in base 2 for
the base 10 powers of 1 to 20, 40, 60,...300. With this table, the
integer powers of the base 2 exponents may be summed and the fractional
parts successively multiplied into the mantissa. Once this task has been
completed, the mantissa may be normalized and the exponent adjusted
appropriately.

Problem

4.3 Using logarithmic tables if necessary, convert the following decimal
numbers to normalized binary numbers:

(a) 800.46x10%° (c) —59.381x10—4
(b) 331.24x108 (d) 3.03x10%*
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The Extraction of Names

The extraction of variable, function and subroutine names (Fig. 4.6) is
by no means as complicated as the extraction of numbers since a conversion
between external and internal mode is not required. Terminating characters
of names are operators, commas, and periods, the end of the statement and
parentheses, depending on context. Of these delimiters, only the opening
parenthesis needs special consideration. If the delimiting character of a
name is an opening parenthesis, then the name that has been extracted
must represent either the name of a subscripted variable, a function refer-
ence or a subroutine call, except in the special instances of subprogram
definition statements (such as FUNCTION F(X), SUBROUTINE A(X,Y)) or
an arithmetic function statement (such as SOMEF(X) = X + 2.xX**2),

When the name has previously occurred in a DIMENSION statement (and
therefore is already existent in the symbol table) or has had dimensions

FIRST
CHARACTER

LILKLMN

MODE =
INTEGER

MODE = REAL l

Y

STORE
CHARACTER

+

FIGURE 4.6 ROUTINE VAREXT: The Routine to Extract Variable Names, Function
References and Subroutine Calls

NEXT CHARACTER
ALPHABETIC OR NUMERIC?

Note:

On entry to this routine,
CHINXT is pointing at the primary
character of the name. On exit,
the pointer is set to the delimiting
character.
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assigned to it in a COMMON statement, the name extracted refers to an
array or an element of that array. If, in an assignment statement or ex-
pression (within an arithmetic IF statement or an expression in a CALL list),
and the name has not occurred previously in either a DIMENSION or
COMMON statement with dimension, then the name must refer to a func-
tion. If the name is a reference to a library function, then the symbol table
should have this information; the absence of such information would lead
the compiler to assume that the reference is to a user-defined function.
Thus while this may in fact be an error on the part of the programmer who
has omitted to list this array in a DIMENSION statement, the compiler has
a logical alternative which masks the error.

Problem

4.4 Write a program that will read a FORTRAN arithmetic statement that
does not include Hollerith constants and will output a list of all the variable
names occurring in that statement. For example, the input statement

AJ1 = B(1+3,J) + 3.0 * (X / (C(K) 4+ 5.0))
should output the following list:
AJl B I J X C K

Note: The name extraction routine may be written as a subprogram and this
routine will be useful in later problems. If a variable occurs more than once in a
statement, it will be permitted to output the name more than once.

The Data in the Symbol Tabkle

The compile time symbol table contains information pertinent to the five
types of data that appear within the source language, that is, simple vari-
ables, dimension variables and arrays, statement numbers, subprogram
names, and constants. Together with this information, which acts as the
key to table, appears data necessary to the compilation of each statement.
For example, the following table lists some of the information required by
the various generators:

Variables: Mode? Real, integer or complex.
Dimensioned? If so, what are the dimensions?
Did the variable name appear as a formal parameter?
Did the variable appear in a COMMON statement or was it
forced into COMMON by way of an EQUIVALENCE statement?
Has the variable been defined within the program; that is, is
there a statement which will assign a value to this variable?
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In the case of a compiler without the intermediate stage of
translation to an assembly language, that is, a one- or two-pass
system, what is the object time address of this variable?

Functions: Is it a library function defined as part of the system or is it a
user-defined function?
Is it a global function (that is, is it available to all subprograms
except itself) or is it local (that is, is it defined in an arithmetic
statement function)?
What is the mode of the function; that is, what is the mode of
the result of the function?
What is (or are) the mode(s) of the argument(s)?

Since the key to each entry in the symbol table is the item itself stored in
internal mode (that is, BCD for names and binary for constants), the re-
covery of any item together with its relevant information can be severely
impeded by the necessity to compare the item in hand with every other
item. Therefore to speed this search, each entry should be equipped with
another secondary key that will describe the type of information being
stored. For example, if one knows that the item in hand is a constant and
the object time stored location needs to be determined from the table, it
will be pointless to compare the item in hand with the variable names in
the table. Furthermore, there is possibility that a constant stored in binary
mode (in a one-pass system) will have a pattern of bits that is identical to
the BCD representation of a name. The presence of the secondary key will
obviate the possibility of a confusion arising in this case.

Conditions that Define a Quantity

Part of the task of the compiler should be to give diagnostics to the pro-
grammer to indicate that a program is, for example, in error as a result of
a variable being undefined within the source document. Thus the attempted
execution of this program may fail due to the absence of a meaningful value
for this variable. Similarly, an undefined statement number can cause both
the compiler and the object program considerable difficulty in attempting
to execute a GO TO statement.

Variables are defined by:

1. Appearance in a COMMON statement. This is not a foolproof test for
definition, but when programs are to be overlaid, the compiler cannot check
for the presence of a value for each variable.
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2. Appearance in an EQUIVALENCE statement. However, if a set of lists
describing the variables that have appeared in EQUIVALENCE groups is main-
tained during compilation, the possibility of undefined equivalenced vari-
ables may be checked further.

3. Appearance as an argument in a CALL statement. This also is not a
true test of definition, since there is no way to determine within the sub-
program which elements are to be used as input to the subroutine and
which are to be given values by the routine.

4. Appearance as a formal parameter (dummy argument) in the de-
fining statement of a subprogram.

5. Appearance on the left-hand side of an assignment statement.

6. Appearance as the second variable in an ASSIGN statement, that is,
as the variable to which the statement number is assigned; for example, in
the statement

ASSIGN 19 TO K
K would be taken to be defined.
7. Appearance in a DATA statement.
8. Appearance as an element of an input statement.

None of these tests for value definition are completely foolproof since
only one (the appearance in a DATA statement) assures that a variable is
assigned a value before it is to be used as a source of information and the
assignment of a value to an element of an array (even in the DATA state-
ment) does not ensure that all other elements have values. However, if
none of the above conditions applies, then the compiler may emphatically
give a diagnostic warning. In certain instances, this should be disastrous
enough to prevent execution, whereas in others the programmer is merely
given due warning of impending failure.

9. As a special case, the index parameter of a DO statement is taken to
be defined within the range of the DO. Although it would appear that the
index parameter (or control variable) of a DO loop is defined within the
range of the DO and will take on the value of the last passage through
the loop plus the increment, except when the range is exited abnormally,
the specifications for FORTRAN state (with regard to the conditions which
terminate the repeated execution of a DO range) :

T Sec. 7.1.2.8, USASI Standard FORTRAN.
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If the value of the control variable is greater than the value represented
by its associated terminal parameter, the DO is said to have been satis-
fied and the control variable becomes undefined.

This situation results from the original implementations of the FORTRAN
compiler. In these versions the DO range was controlled from a set of index
registers in which the various parameters were stored. However, because
of the limited number of registers it was necessary to reuse registers outside
the range, and thus there was no guarantee as to the current value of the
index parameter (or control variable). Thus rather than leave the value of
the parameter to the wiles of the compiler writer, it was felt better to state
that the value of the parameter became undefined. Further, since the value
of the parameter was stored in a register instead of direct access memory,
its value was not available without considerable programming difficulty and
subsequent loss of computer time.

10. Statement numbers are defined by appearance in columns 1-5 of a
source statement.

11. Subprogram names are defined by appearance in a FUNCTION,
SUBROUTINE or PROGRAM statement, by appearance on the left-hand side
of an arithmetic statement function, or by implication as a standard library
subprogram.

12." Constants are always defined.

Organizing the Symbol Table

The purpose of the compile time symbol table is to store the elements of
the program together with information pertinent to the uses to which each
element has been put. Since object time addresses of data are not subject
to inspection at object time, these addresses may be assigned in any order
which is convenient to the programmer or the computer. However, the com-
pile time symbol table is constantly being scrutinized and thus its construc-
tion must be amenable to this inspection. The SYMTAB routine which takes
this task upon itself, may be called upon at any time to perform one of
the following jobs:

(a) Post an item and its associated data.
(b) Retrieve the data associated with any item.

(c) Delete an item and its associated data.
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All these activities involve the searching of the table to locate the item or
to recognize the absence of that item, and hence the efficiency of this search
affects the efficiency of the whole compiler.

The obvious technique of arranging the symbol table is to divide the
memory into a distinct number of cells and to assign each entry to the next
available cell in the table vector. To retrieve the data associated with any
item, or to locate an item for deletion, the in hand item must be checked
against the table from the top down. Thus to retrieve an item, the average
number of comparisons will be equal to half the size of the present table.
Similarly, determining that an item is present requires the same number
of checks.

If certain names in the language are to be reserved for special purposes,
then the number of comparisons will be increased by this number each time.
Thus the search time in a compiler with a set of reserved names can in-
crease substantially, compared to one without such restrictions.

An alternative manner of symbol table organization T is that which was
originally used in the SOAP assembler for the IBM 650. Instead of assign-
ing compile time cells to an item in the order of their presentation to the
symbol table, this technique uses the internal representation of the item as
input data to a routine that creates an address within the available symbol
table area. This address is then checked to verify the existence of the item.
If the location is blank, the item does not exist in the table and may be
posted at that position. If the location is already in use, the item that is
stored and the item in hand must be compared. If they match, the search
is complete. If they are not equal, then a further search must be made.
This may be done by one of two techniques: Either a sequential search
can be initiated or a link can be formed to a separate list ordered by appear-
ance of the item. The former technique has two advantages: Only a single
table is required, and if a blank cell is located during the sequential search,
then the item in hand does not have a match within the table since an entry
would have had to take the same route. However, when the table is reach-
ing the saturation point, the number of comparisons either to locate the
matching item or determine the absence of that item approaches that of a .
standard sequential search. Further, the sequential search must be so
organized that the table is considered to be cyclic. That is, since the starting
point for the sequential search is not the first item in the list, special

tJ. Field, D. A. Jardine, E. S. Lee, J. A. N. Lee and D. Robinson, Kingston

FORTRAN 11, 1620 Users Group Conference, Chicago, 1964; also A. Batson, “The
Organization of Symbol Tables,” Comm. ACM, Vol. 8, No. 2, 1965.
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arrangements must be made to cycle from the last item in the physical table
to the first item in the table and also to stop if the cycle continues up to
the item onto which the name of the item was originally mapped. If the
latter situation occurs, then the table is full and the item has not been
included in the table.

A method by which the primary table is linked into a secondary table
requires that each entry be supplemented by an address defining the loca-
tion of the next entry in this string. Thus if a match is not made in the
primary table, the link address is checked to determine whether there is a
list emanating from that point. If the address is blank, then such a list is
not present and a match will never be accomplished. Thus the item may
be posted at the next available cell in the secondary table. If a link address
exists, then the item at that address must be checked, and if a match is
made, then the search is complete. If not, the link address at this location
is to be tested, and the search will continue through the secondary table.
The checking of reserved words in a random search technique does not
detract from the overall efficiency of the system since a single mapping of

PRIMARY TABLE SECONDARY TABLE
Name Data Link Name Data Link
>
o otk
ALGORITHM
NAME
FIGURE 4.7
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the word into the primary table will suffice to determine whether the item
is reserved. Thus in the worst case, only one cell must be checked to deter-
mine that an item is not a reserved word as opposed to the necessity to
check every reserved word in a sequential search. The linkages of this
pseudo-random addressing technique are shown in Fig. 4.7.

This technique is much faster than the sequential search system, pro-
vided the table is not approaching the saturation point. Table 4.2 shows
some experimental results.

TABLE 4.2 2
No. of Items Sequential “Random”

in Table Search Search

20 40 2.14

50 55 2.25

100 80 2.37

200 130 3.14

To locate a

reserved word 15 1.08"

Retrieval time: 7/T°¢
Table size: 400 cells
No. of reserved words: 30

2 From A. Batson “The Organization of Symbol Tables,” Comm. ACM, Vol. §, No. 2, 1965.

® This time is not exactly 1.00 since some reserved words mapped into the same location
in the primary table and thus had to be stored in the secondary table.

° T is the time to examine a single entry in the table; 7 is the total search time.

This “random” posting and retrieval technique affords substantial time-
saving advantages but also has some inherent disadvantages:

(a) The tables must be arranged so as to be cyclic.

(b) Although it is obvious when the secondary table is full in a linked
secondary system since items are posted sequentially, vacant cells may be
present in the primary table, and only a sequential search through the
primary table will reveal these cells. Thus the table may appear to be full
when the secondary table becomes full, and only special action can deter-
mine the validity of this assumption.

(c) If the programmer requires a symbol table mapping, the table to-
gether with any imbedded blanks must be searched, whereas in a sequential
table the table is dense and can be mapped more rapidly.
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(d) Since all variables not in COMMON are local to a subprogram,
generally these variables must be deleted from the symbol table when an
END statement is located. This prevents confusion between similarly named
variables in two subprograms and allows the omission of the subprogram
name from the data associated with each item. Further, the deletion of
items from the symbol table after the compilation of one subprogram will
leave room for the new items in the next subprogram. Thus the total size
of the table need not be excessive. Even though the variables that are in
COMMON define an area that is common to all subprograms, the names and
pertinent data need not be remembered. Only the bounds of the COMMON
area are relevant to succeeding subprograms, and thus more space is avail-
able for the next set of postings. Function names and constants are common
to all subprograms and therefore are not to be deleted on the location of
an END statement.

However, all these deletion processes suffer from the same problems
found in forming a map of the table.

The pseudo-random technique of symbol table organization together with
a secondary or even a tertiary table has the advantage that where there is
variable amount of pertinent data to be stored with each entry the sub-
sequent table can be used for these variable data strings, whereas the
primary table(s) which contain the keys and fixed-length names may be
of standard cell sizes. For example, a dimensioned variable must be stored
in the symbol table not only by name and type but also with the dimen-
sions. Thus the name may be stored in the primary table (if space exists)
together with a link to a subsequent table in which the dimensioning in-
formation is stored. Thus if a single word is reserved for the storage of the
next available address in the subsequent table, variable numbers of words
may be reserved for the dimensioning information without upsetting the
whole organization of the symbol table and at the same time only using
space as required without leaving blanks in cells that were originally set at
a size equal to the maximum required for any string of data.

Such a technique can be utilized for the construction of the symbol and
occurrence table of an indexer.! An indexer is a program, the input to
which is the source language of, for example, an assembly system, and the
output of which is a table of the statements in which each variable is either
used or defined. For example, the following COMPASS (Control Data

T R. Pratt, Referencer and Indexer. IBM 1620 Program Library No. 1.1.014.
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3600) listing includes the names of 10 variables, some of which are actually
defined in this portion by their appearance in the first eight character posi-
tions. Thus the output of the indexer for this partial program will show that
some variables are undefined.

STA CACHE 001
A IF.EQ CACHE,STORE 002
ENI 99,1 003
B IFU 004
AB  RAO AA,1 005
1P AB,1 006
ENI 49,2 007
C IFU 008
ENDIF B 009
ENI 49,2 010
AB  RAO AA,1 011
1JP AB,1 012
ENDIF  C 013
BC RSO BB,2 014
1Jp BC,2 015
ENDIF A 016
LDA NEXT 017

The indexer output for this program would be:

002 A 016
AA 005 011
005 AB 006 012
004 B 009
011 BB 014
014 BC 015
008 C 013
CACHE 001 002
NEXT 017
STORE 002

where the first column of figures denotes the statement in which the vari-
able is defined, and the figures to the right of the variable denote the state-
ments in which that variable name appears. Thus the variable AB is defined
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01

02

03

04

05

06

11

12

13

14

15

16

at statement number 005 and used in the statements numbered 006 and
012. Similarly, the variables AA, CACHE, NEXT and STORE are not defined.

Such a table is extremely useful in the debugging or updating of pro-
grams, for the change in action or effect of a single variable at several points
in the program or the execution of a program may require the checking of
each occurrence of that variable. Similarly, in reading a program, the index
is an aid to the tracing of the logical flow of the execution of the program.

When a program is prepared to perform the task of an indexer, both the
number of references to each variable and the total number of variables are
unknown. Thus given a sufficiently large portion of memory, the random
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NEXT
NAME FIRST LATEST
NAME OCCURRENCE OCCURRENCE
A r 04 11 15
AB l 00 12 14 e
B / 05 \
AA 4—/ 00 16 16
BB w0 B
ADDRESS OF NEXT
OCCURRENCE | TA® "I occurrencE
002 D 15
005 D 13
006 U 14
012 u 00 Note:
In this example all two-digit
016 u 00 addresses refer to entries in either
table, while three-digit addresses
005 D 00 refer to statement numbers. The
primary table is incomplete.
* D = definition
U=ause
FIGURE 4.8
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technique, with a subsequent table for the storage of the references, is a
suitable system. The primary table may be used to post the name of the
variable and three addresses:

1. The address of the storage location of the next variable which maps
into the same position in the primary table.

2. The address of the word in which the occurrence of the first use of
the variable is noted.

3. The address of the last word in the subsequent table at which the
number of the statement in which the last (or latest) occurrence has been
noted.

Within the occurrence list associated with each variable will be: (a) the
number of the statement at which the variable was found, (b) a tag to indi-
cate whether the occurrence was merely a use or a definition and (c) an
address linking this posting with the word in which the next occurrence is
noted. This system is shown graphically in Fig. 4.8. The address of the
last (or latest) occurrence in the primary table is merely a luxury which
enables the posting or retrieval routine to locate the last entry without
chaining through all previous occurrence postings. This address is continu-
ally updated as new postings are made. The posting routine is shown in
Fig. 4.9.

Problem

4.5 Literary critics have taken to using a computer to automate many of
the techniques of literary analysis and, as a result, have been able to authenticate
the authors of several important works. For example, using a computer to
analyze the metric form of the Odyssey, researchers concluded that the whole
work was written by one person, and since there is other evidence to ascribe
certain portions to Homer, the evidence as a whole leads to but one conclusion.
Similarly, the authorship of the Federalist Papers was determined by an examina-
tion of the frequency of such key words as “upon,” “while” and “whilst.” The
technique of word counting and listing all occurrences in context is known as
forming a concordance. Such a program involves the reading of a text in
machine-readable form (cards, tape etc.), extracting each word and keeping
track of each occurrence of that word.

Assume that a text has been prepared on cards and may contain punctuation.
Write a program to extract the words, to count the number of occurrences and,
eventually to output both an alphabetized listing of the words and counts and a
second listing in the order of frequency of occurrence, commencing with those
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Create ADDR1
from name

Is the word at
ADDR1 empty?

Is the name
the same?

Request ADDR1
from
secondary table

Y

Put ADDR1
ADDRI1 = LINK1 in last LINK1

Put name in the
word at ADDR] [~ ( ]

Request new

Is LINK1 filled?

ADDR2
Request new v
ADDR2
Put ADDR2
; in FIRST & LAST
Store ADDR2
in last LINK2
T LOoC reference to occurrences in source document
ADDR1  address of item in name list
Store ADDR2 ADDR2  address of item in occurrence list
in LAST LINKL  link to next name in name list at ADDR1
} LINK2  link to next occurrence in occurrence list at ADDR2
FIRST  address in name list at ADDR1 of first occurrence of name
Store LOC
A in ADDR2 LAST address in name list at ADDRI of latest occurrence
Word at ADDR1
[ name | FIRST [ LAST I LINK1 I

Word at ADDR2

FIGURE 4.9. OCCURRENCE POSTING: Input Parameters include Name and Location

of Occurrence
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words of least frequency. Do not overlook the fact that some of the text words
may not fit into a single computer word.

For this particular example, the following symbolism should be used to repre-
sent those characters that do not exist in a standard 48 character set:

! exclamation mark /.
? question mark @.
colon

;  semicolon .

¢ quote and unquote *

> apostrophe /

- hyphen - (minus sign)

— dash -- (repeated minus)

Note the following: (a) Poets and writers of prose may use shortened words
such as ’twas or ’t. The apostrophes should be included as part of these words.
(b) A hyphenated word should be regarded as a single word. (¢) When the last
character in a sentence is an apostrophe, the text should be prepared so that
there is a blank between this character and the period. In this manner there
can be no confusion between this combination and an exclamation mark.

Tree Structures

The technique of retrieving or posting items in the secondary table of
a pseudo-random symbol table wherein successive items in the table are
linked to each other by each entry containing the address of the next entry
may be used as the fundamental posting and retrieval system. However,
starting from a single entry and proceeding to later entries by means of
links is no more efficient than the sequential system. Similarly, in a pseudo-
random technique, with a large primary table and thus many sublists, the
number of items to be examined before determining the existence of the “in
hand” item is comparatively small. During this process of comparing the
in hand item with the items existent in the table, there are three possible
answers: equal, greater than and less than. If an equal condition is found,
then the item already exists in the table and the search is completed. How-
ever, in an unequal condition, two branches may emanate from that point
(or node), one for the less than condition and the other for the greater than
condition. At each succeeding node, the same test may be made and new
branches started. Such a structure is known as a zree.

 For further information see J. A. Painter, Computer Preparation of a Poetry Con-
cordance, Comm. ACM, Vol. 3, No. 2, pp, 91-95, 1960.
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Trees have been the subject of intensive study  for the purposes of in-
formational retrieval systems and thus have been provided with a distinct
set of terminology:

Root: The root is the topmost node in the tree. Only one root may
appear in a single tree.

Parent: The parent of any node (except the root) is its immediate
predecessor in the tree.

Child: The child of a node is one of its immediate successors. Thus if «
is the child of g, then 8 is the parent node of . With the understanding
that a tree is grown from its top down (!) and that each branch of a node
cither moves downward toward the left or the right, then each node may
have only two children (corresponding to the conditions of greater than
and less than) known as the left and right children.

Descendant: The descendants of a node are all the nodes that are chil-
dren, children of children, etc., of that node.

Leaf: A leaf of a tree is a node with no descendants.

Subtree: A subtree is that portion of a tree that contains all the descend-
ants of a single node.

Branch: The branch of a tree is a single path from any given node to
any leaf that is one of its descendants.

When information is stored in the form of a tree structure, the accessi-
bility of any single item depends on the length of the longest branch within
the tree. For example, an ordered list may be considered as a tree which
contains a single branch and within which each parent has only a single
child. Thus the retrieval time of any piece of data will be proportionate to
the length of the single branch. However, in a tree constructed so that each
parent has two children, except where the children are leaves, and the
length of all branches does not differ by more than one node, the average
retrieval time may be shortened enormously. For example, a tree contain-
ing 1,000,000 items may be constructed so that no more than 20 compari-
sons are necessary either to locate an item or to determine its absence.
Thus if a tree contains n levels, that is, the length of each branch is », then
the maximum number of items in the tree will be 2"—1, whereas in an
unbalanced tree (that is, one in which the branches or subtrees within one

T See the references in C. C. Foster, 4 Study of AVL Trees, Goodyear Aerospace

Corp. Report No. GER-12158, Akron, Ohio, April, 1965; and Proceedings of the
A.C.M. Conference, Cleveland, Ohio, August, 1965.
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node need not be of equal length), the minimum number of stored items
is n. The maximum number of items stored in a balanced tree is shown in
Table 4.3. Conversely, the same table indicates the maximum number of
comparisons necessary to locate a single item in a balanced tree.

TABLE 4.3
Maximum No.
n of Entries
1 1
2 3
3 7
4 15
5 31
10 1023
15 32767
20 1048575

The efficient retrieval of information from a balanced tree may also be
accomplished by use of a binary search technique on an ordered list of
items. That is, given an ordered list the number of comparisons necessary
to retrieve an item cannot exceed log, (m + 1), where m is the number of
items in the table. A binary search technique compares the in hand item
with that at the center of the table and then makes one of three decisions:
(a) The item is at that location; (b) the item is above this point (that is,
it must occur in the upper portion of the table); or (c) the item lies in
the lower half of the table. If the item is not located immediately, then the
portion of the table within which it would appear to lie is regarded as a
new table and the search procedure repeated. If the table is successively
halved until one item remains and that item does not compare equally with
that in hand, then the item does not exist withir. the table.

In a compiler, the order of presentation of variable names and other
symbol table data to SYMTAB is purely random, and thus maintaining an
ordered list is wasteful of time. Further, the unrestricted formation of a tree
will not necessarily produce a balanced tree from which data may be ex-
tracted rapidly. Foster T has shown that trees may be kept balanced by a
simple routine, but the posting and retrieval time, together with that for
maintaining balance, far exceeds that for the same procedures in a pseudo-
random table.

T C. C. Foster, Ibid.
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Memory Allocation at Object Time

In a compiler the programmer has very little control over the manner
of organization of the object time data tables except with respect to items
in COMMON. Thus the compiler must provide the organizational system
itself. In fact, the compiler writer could choose to scatter the data over the
available memory in a random order similar to that proposed for the com-
pile time symbol table and, provided that the data was readily accessible at
object time, the programmer would not suffer because of this process. At
the extreme, the individual elements of an array might not be placed in
contiguous memory locations but rather in locations convenient to some
retrieval system. As a general policy, compiler writers choose to allocate
object time data storage in the high-order end of the memory on the basis
that generated programs must be placed in sequentially increasing memory
locations, subprograms which are relocatable may be fitted into any avail-
able space and data must be organized in at least some reasonable fashion.
Thus beginning at the highest available location, data are allocated space in
descending sequence, arrays being stored backwards  with respect to their
storage addresses. The following list describes the needs of each type of
variable and constant.

Simple Variables and Constants

1. Real variables are contained in one word, the value being stored as a
biased exponent and normalized mantissa.

2. Integer variables are contained in one word, the value being stored
in the standard internal integer form.

3. Complex variables are contained in two contiguous words, the value
of each part being regarded as a real variable. In effect, a complex variable
is treated as a vector of two elements.

4. Boolean variables are contained in one word, or if possible (depend-
ing on the computer), as one bit packed into a word with other one-bit
variables and constants.

5. All constants are stored in the same manner as their respective vari-
ables. However, the value of the constant must be loaded before execution
of the object program, whereas locations for variables are unaffected during

T See the footnote on page 206.
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loading except when that variable appears in a DATA statement. Hollerith
constants are indistinguishable from integer or real constants though, of
course, they fulfill a different purpose at object time.

Dimensioned Variables

6. Vectors (one-dimensional arrays) are stored such that their first ele-
ment is located at the currently highest numbered available address and with
succeeding elements at progressively lower-numbered addresses. That is,
the vector dimensioned A(10) would be stored in the order A(1), A(2),
A(3) ...A(10) at successively lower memory locations. The address of
element A(l) may be calculated from:

Address of A(1) = Address of A(0) — 1
where the address of A(0Q) is called the base address of the vector A.

Note that
Address of A(0) = Address of A(1) + 1

7. Matrices (two-dimensional arrays) are stored with the first element,
for example, B(1,1), stored at the highest numbered address available. The
rest of the elements are stored in columns at progressively lower-numbered
addresses. That is, if the first subscript refers to a row position and the
second subscript to the column, the order of storage is such that the first
subscript changes most rapidly in passing through sequentially lower storage
locations:

B(1,1), B(2,1),B(3,1) .....

If the matrix B is dimensioned as B(IMAX,JMAX), then the address of the
general element B(1,J) may be computed from the expression:

Address of B(1,J) = Address of B(0,0) — (J*IMAX-+1)
where the address of B(0,0) is called the base address of B and
Address of B(0,0) = Address of B(1,1) + (IMAX+1)

Note that if the compiler or object time routines do not check for sub-
scripts outside the range of the dimensions declared in the DIMENSION
statement, and in particular for zero or negative values of those subscripts,
then such subscripts will work properly on the second subscript but not on
the first. For example, if B is dimensioned B(3,3), then B(3,1) and B(0,2)
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will refer to the same element, a condition which may be undesirable.
That is,

Address of B(0,0) = Address of B(1,1) + 4

Address of B(3,1) = Address of B(1,1) + 4 — (1%3+3)
= Address of B(1,1) — 2

Address of B(0,2) = Address of B(1,1) + 4 — (2+3+0)
= Address of B(1,1) — 2

However, the location of B(2,0) will be two words higher than B(1,1).
Since zero and negative subscripts are extremely useful in the manipulation
of data that occur in the COMMON area, the facility to refer to elements
outside the range of the DIMENSION statement is important. However, the
programmer must be warned to know what he is doing and to obtain the
storage allocation algorithm. As an example of memory layout, consider
the following COMMON statement:

COMMON X, A(4), B(2,3)

The memory layout would be:

Variable name Memory location (base 10)
X (Also Base of A) 3999 (for example)
A(1) 3998
A(2) (Also Base of B) 3997
A(3) 3996
A(4) 3995
B(1,1) 3994
B(2,1) 3993
B(1,2) 3992
B(2,2) 3991
B(1,3) 3990
B(2,3) 3989

8. Three and higher dimensional arrays are stored in the same manner
as simpler arrays; thus elements are stored at progressively lower-numbered
addresses with the first subscript of the array varying most rapidly and
the final subscript least rapidly. For example, an array with dimensions
A(2,3,3,2) is stored in the following order (from highest numbered memory
address to lowest address) :
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A(1,1,1,1)
A(2,1,1, 1)
A(1,2,1,1)
A(2,2,1,1)
A(1,3,1,1)
A(2,3,1,1)
A(1,1,2,1)
A(2,1,2,1)
A(1,2,2,1)
A(2,2,2,1)
A(1,3,2,1)
A(2,3,2,1)
A(1,1,3,1)
A(2,1,3,1)
A(1,2,3,1)
A(2,2,3,1)
A(1,3,3,1)
A(2,3,3,1)
A(1,1,1,2)
A(2,1,1,2)
A(1,2,1,2)
A(2,2,1,2)
A(1,3,1,2)
A(2,3,1,2)
A(1,1,2,2)
A(2,1,2,2)
A(1,2,2,2)
A(2,2,2,2)
A(1,3,2,2)
A(2,3,2,2)
A(1,1,3,2)
A(2,1,3,2)
A(1,2,3,2)
A(2,2,3,2)
A(1,3,3,2)
A(2,3,3,2)

MEMORY ALLOCATION AT OBJECT TIME

Highest Numbered Address

Lowest Numbered Address
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9. Statement numbers: In a one-pass system there can be references to
a statement number that is not yet defined. In this case, an object time word
is needed to allow indirect references to the statement number. The address
of the statement can then be filled in when the statement is encountered.
After the statement has been compiled, all references to that statement can
be compiled directly, and therefore the object time word is no longer
needed. The address of the statement may be loaded into the reserved loca-
tion before execution of the program.

In order to save data storage space at the cost of loading time and at
the cost of a larger amount of data emanating from the compiler, a list
which describes the location of each reference in the object program to the
undefined statement number may be maintained in the compiler and pro-
vided to the loader. The loader must then overlay these addresses onto the
object program. Although this increases the loader time, the branches may
now be executed directly, thus saving execution time.

In a multipass system or even a one-pass system where all references are
made after the reference statement has been encountered, no object time
storage is required.

10.  Subprogram Entries: In a system that compiles an object language
and data onto an external medium and then reloads for execution, only
user-defined and selected library routines need to be loaded, thereby saving
both time and memory space. In this situation, library subprograms must
be written in a relocatable form and do not occupy a fixed location in the
memory. Similarly, the location of user-defined subprograms is indeter-
minate since their lengths are undefined.

A simple method for linking the mainline program to library subprograms
which are relocatable and of which there is a predefined number, is to re-
serve a singly dimensioned array into which, at object time, will be stored
the absolute address of the entry point to each subprogram. With this trans-
fer vector, links may be made to library subprograms indirectly, each sub-
program having a fixed address location in the vector. Thus if there are n
library routines provided with the system, then the transfer vector should
have the same number of entry locations. For example, USASI Basic
FORTRAN requires that each compiler be provided with seven external
functions: EXP, ALOG, SIN, COS, TANH, SQRT and ATAN; whereas the full
FORTRAN must contain 24 basic external functions: EXP, DEXP, CEXP,
ALOG, DLOG, CLOG, ALOG10, DLOG10, SIN, DSIN, CSIN, COS, DCOS,
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CCOS, TANH, SQRT, DSQRT, CSQRT, ATAN, DATAN, ATAN2, DATAN2, DMOD
and CABS.

On the other hand the specification lists a number of intrinsic functions
(six in Basic FORTRAN, including such functions as ABS and IFIX, and 31
in full FORTRAN), but does not state the number of these which are re-
quired in a system. Thus it would appear that the compiler writer can choose
those to be included. However, the standard does specifically state (in Sec.
8.2) that:

The symbolic names of the intrinsic functions are predefined to the
processor. . . .

A similar linkage technique may be utilized in connection with user-defined
subprograms if transfer addresses provided in the object time data area are
used. In essence, referring to a subprogram is similar to the task of referring
to an undefined statement number and the same techniques of linkage apply.

In particular, since subprogram names are not deleted from the symbol
table between subprograms, a transfer address location may be assigned at
the first reference to the subprogram if it has not yet been compiled. If the
subprogram is compiled before any other subprogram makes a reference to
it, then the transfer address location must be reserved on recognition of the
subprogram definition statement.

COMMON, DIMENSION and EQUIVALENCE

The layout of the object time data area is greatly influenced by the de-
clarative statements COMMON, DIMENSION and EQUIVALENCE. In general,
the FORTRAN programmer has no control over the absolute locations of
data and variables, though by the use of COMMON and implicit dimension-
ing, certain items may be placed in memory in a prescribed order. In par-
ticular, a DIMENSION statement, while declaring arrays and requesting a
certain number of locations, cannot force upon the compiler the manner in
which the array is to be stored. As mentioned, the elements of the array may
be stored in some random order and, provided that the object time routines
could unwind this order to provide a certain requested element, the pro-
grammer would not be aware of the fact. Further, the definition of several
arrays in a single DIMENSION statement does not imply that these arrays
have any connection to each other. In fact, if the compiler does place these
arrays in memory in that order, this is a peculiarity of the system, not of
the language.
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A COMMON statement, or a collection of COMMON statements, does
imply contiguous placement of the variables and arrays. Blocked COMMON,
on the other hand, does not imply contiguous blocks.

To complicate this vacuous concept, the programmer has the ability to
equate variables by the use of the EQUIVALENCE statement. However, an
EQUIVALENCE statement is doubly defined, or at least has two algorithms of
organization depending on the data to be equated. Let us review some of
the rules that control the use and meaning of the EQUIVALENCE statement.

1. Each pair of parentheses in the statement encloses the names of two
or more variables that are to share the same memory location at object
time.

2. Each quantity not mentioned in an EQUIVALENCE statement is as-
signed a unique location, except when that quantity appears in a COMMON
statement.

3. Variables brought into the COMMON block by means of an EQUIVA-
LENCE statement may increase the size of the COMMON block as originally
specified in the COMMON statements. That is, if an array is brought into
COMMON in such a fashion that some elements would fall outside the al-
ready established bounds of COMMON, then the size of the COMMON block
must be increased to encompass the whole array.

4. Since the elements of an array are stored in consecutive locations from
high-order address to low-order address, an array may not be brought into
the COMMON block in such a way as to cause the array to extend beyond
the upper bound of the block. In particular, as is a frequent occurrence,
when the COMMON block is arranged to be the uppermost portion of
memory, this protection ensures that some elements of the array do not lie
in fictitious memory.

5. EQUIVALENCE may not rearrange COMMON. That is, two items al-
ready specified as existing in the COMMON block may not be equivalenced.

Certain effects implied in these rules must be observed. By rule 2, any
variable not in COMMON and not specifically mentioned in an EQUIVALENCE
statement must have a separate entity. Thus if the following statements
appeared in a single subprogram,

DIMENSION A(10),B(3),1(2,3)
EQUIVALENCE (A(1),B(1))

memory would be arranged in the form:
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1) =B(1)
2) =B(2)
3) =B(3)

4)
5)
6)
7)
8)
9)

A(10)
1(1,1)
1(2,1)
1(1,2)
1(2,2)
1(1,3)
1(2,3)

However, if the EQUIVALENCE statement were replaced by
EQUIVALENCE (A(10),B(1))

and then the arrays A and | were left in the same locations as previously,
the array B would overlap the array | so that there would be an implicit
EQUIVALENCE, such that 1(1) and 1(2) would share memory locations with
B(2) and B(3), respectively. Thus a violation of rule 2 would exist. Hence
the array | will have to be relocated.

A(
A(
A(
A(
A(
A(
A(
A(
A(

1)
2)

A(10)

I(1,1)
1(2,1)
1(1,2)
1(2,2)
1(1,3)
1(2,3)

B(1)
B(2)
B(3)
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Thus although there may be implicit equivalence of elements in those arrays
that appear by name in the EQUIVALENCE statement, such that

EQUIVALENCE (A(5),B(2))
also implies
EQUIVALENCE (A(4),B(1)),(A(6),B(3))

undeclared implicit equivalences are invalid—except in COMMON. Thus
given the statements

COMMON A(3), X,K

EQUIVALENCE (A(2),B(1))

DIMENSION B(3)

the COMMON block will be arranged as the sequence A(1),A(2),A(3),X,K
and the following implicit equivalences will be valid

B(2) =A(3)
B(3) =X

Consider the statements:

COMMON A(3),X,K
DIMENSION B(5)
EQUIVALENCE (X,B(5))

Now after the compilation of the first statement, the COMMON block would
be laid out as:

A(1)

A(2)

A(3)

X

K

Making the fifth element of B equivalent to X would imply the following
equivalences, which are all valid since all variables are within the COMMON
block: A(1) =B(2), A(2) =B(3), A(3) =B(4), but element B(1) is
now before (has a higher memory address) than A(1) in violation of
rule 4.

By rule 5, the EQUIVALENCE statement may not cause a rearrangement of
the variables in the COMMON area; that is, in effect, two items that already
appear in COMMON may not be elements of an EQUIVALENCE statement
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group. This would seem to say that within one parenthetical group, there
may appear only one item which is in COMMON. While this is true, the
statement is not strong enough to prevent some implied equivalences, since
the interaction of COMMON and EQUIVALENCE can cause a violation of
violation of rule 5 that is not apparent in the statement, but that appears
after certain groups in the EQUIVALENCE statement have been compiled.
For example,

COMMON A(3), X, K
DIMENSION B(5)
EQUIVALENCE (X,B(1)),(B(2),A(3))

would require the following arrangement of COMMON:

A(D

A(2) X B(1)

A(3) B(2)

K B(3)
B(4)
B(5)

which is illegal, as COMMON has been rearranged since the first definition
of the area in the COMMON statement. To overcome this obstacle, it is
stated (rule 3 implicitly) that a variable brought into COMMON must be
regarded as having been declared as a COMMON variable after its first
equivalencing. Thus group 2 of the above EQUIVALENCE statement is in-
valid.

While rule 3 states that a variable may be brought into COMMON in such
a fashion that the length of the COMMON area is increased, there is one
more rule, not stated above, which will prevent implicit overlap with varia-
bles not in COMMON (rule 2), that is:

6. Subprograms may not extend COMMON. Thus the COMMON block
defined in a main program shall always be of a length greater than or equal
to the COMMON blocks in subprograms. For this reason the location of the
END OF COMMON must be communicated to all subprograms. For example,
consider the following statements in a main line program and a subprogram:

PROGRAM MAIN SUBROUTINE SUB
COMMON X,Y(3) K COMMON A,B,C
DIMENSION X(2)
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Such statements would implicitly equivalence the following variables:

Main Program Subprogram
X A
Y(1) B
Y(2) C

If the X array in the subprogram were placed immediately following the
variable C in the subprogram, the following equivalences would be in effect:

Main Program Subprogram
Y(3) X(1)
K X(2)

That is, the X array in the subprogram would effectively be in COMMON.
Thus the END OF COMMON must be used to determine the object time
addresses of non-COMMON variables in subprograms.

Conversely, if we allowed COMMON to be extended by a subprogram
without recourse to extending COMMON in the main program, then some
local variables in the main program would be implicitly in COMMON, hence
violating rule 2. Rearranging COMMON as a result of an extension in a
subprogram is not practical when subprograms may be compiled without
reference to the main program. That is, where a subprogram may be com-
piled for use with several main programs, the compiler has no way to deter-
mine the size of the original array.

When the implementer is constrained to conform with the standard so
that all the elements of the language are present (a reasonable request) and
to permit all those features that have been overlooked (a questionable re-
quest), and thus is required to permit the extension of the COMMON area
by a subprogram, he must follow one of two courses. He must either cause
the examination of all COMMON block lengths to determine which is largest
before assigning other memory space or ignore the rule stating that no
implicit equivalences are permitted between variables that are outside of
COMMON and the COMMON block, giving the programmer a diagnostic
warning that this may cause some unusual results. In this instance, the
insistence of not extending the COMMON area would seem to be a valid
variance from the standard.

As a result of these intricacies, the “execution” of EQUIVALENCE state-
ments at compile time is not straightforward and cannot necessarily be per-
formed in the order set out by the programmer. For example,
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COMMON A(3),X,K
DIMENSION B(5),C(2)
EQUIVALENCE (B(5),C(1)),(B(1),A(3))

would require a number of steps. Initially, that is, before the EQUIVALENCE
statement is encountered, the COMMON area would be set out as:

A1)
A(2)
A(3)
X

K
———___END OF COMMON
B(1)
B(2)
B(3)
B(4)
B(5)
c(1)
c(2)

Then after the first EQUIVALENCE group has been executed, the following
arrangement exists:

A(1)

A(2)

A(3)

X

K

— END OF COMMON

B(1)

B(2)

B(3)

B(4)

B(5)  C(1)
c(2)

In practice, the only operation necessary to make this memory rearrange-
ment would be to alter the addresses of the variables in the symbol table.

The next group within the EQUIVALENCE statement places B into the
COMMON area, bringing with it the array C (adjusting the base addresses
of both arrays), and shifts the END OF COMMON down by three words to
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encompass the whole set of variables and elements of arrays of which at
least one element is now in COMMON. To remember that C is equivalent to
a portion of the array B requires special handling. The final layout of
memory will be:

A(1)

A(2)

A(3)  B(1)

X B(2)

K B(3) ——— Tnitial END OF COMMON
B(4)
B(5) c(1)

C(2)
Final END OF COMMON

In processing COMMON, DIMENSION and EQUIVALENCE statements it is
both uneconomical and frustrating to organize blindly the memory layout
in the order of occurrence of the statements and variables within those
statements. Consider Fig. 4.10. If all COMMON statements are collected
primarily and processed, then a temporary END OF COMMON may be com-
puted and permanent address assignments made to all variables that appear
in that area since COMMON may not be rearranged. Next DIMENSION state-
ments must be considered since the proper “execution” of the EQUIVALENCE
statement depends on this knowledge. However, it is not known at this
point which of the variables in the DIMENSION statement will eventually be
brought into COMMON by equivalencing, and hence only the names and
dimensions may be posted in the symbol table. To enable the later assign-
ment of addresses to variables that do not appear in the COMMON area, a
list of the variables occurring in the DIMENSION statement must be formed
and reserved until the EQUIVALENCE statements have been processed. Having
collected the dimensions of the arrays that may appear in the EQUIVALENCE
statement, we must now collect EQUIVALENCE groups (that is, parenthesized
groups declaring that the variables are to be stored in the same computer
word) and scan these for the names of variables that have already appeared
in the COMMON statement. Once these variables are recognized, all other
variables in that group must be considered to be in COMMON and hence
can be assigned permanent object time addresses on the basis of the original
COMMON declaration and with reference to the preceding DIMENSION
statement. Also these variables should be deleted from the list of variables
not yet assigned addresses that was set up when the DIMENSION statements
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were scanned. Once such a group has been processed, all other groups
must be scanned for variables that are now in the COMMON area. That is,
if the first located COMMON variable in the first scan was found in the
third and last group, the other two groups must be rescanned after the
third group is processed in case any one of their variables is now in
COMMON.

Once all groups in the EQUIVALENCE statement that contained either an
explicit or implicit variable in COMMON have been eliminated, and the
END OF COMMON has been adjusted, then all other groups must contain
non-COMMON variables.

Symbols used in the Flowchart of the EQUIVALENCE Algorithm

EOC The address of the last element in COMMON, that is, the address of
the END OF COMMON.

DLIST A list of variable names that are mentioned in the DIMENSION state-
ments. This list is used after the execution of the EQUIVALENCE
algorithm to assign unique addresses to these variables.

ELIST A set of lists containing each group of the EQUIVALENCE statement.

ELIST(i)  The i-th sublist in ELIST.

NEXT The next unused word in the available memory.

LLIMIT The lower limit address in the algorithm.

N The number of sublists in ELIST.

TADD Temporary address.

SYMTAB Symbol table.

Note: Since no element in an EQUIVALENCE group may be a formal parameter,
all address assignments may be completed at compile time, and thus no object
program is output from the algorithm for object time address computation.

FIGURE 4.10 Equivalence Algorithm
(Continued on next page.)
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Since these groups have no fixed address on which to base their absolute
address and much reshuffling may take place, for example, the first element
in each group is arbitrarily assigned an address, each group must be
scanned to determine its spread. The spread is the number of words that
are affected by the arrays and variables in the group after the appropriate
elements have been assigned to the same storage location. For example, if
we have the statements

DIMENSION A(10),C(5)
EQUIVALENCE (A(8),C(2))

then regardless of the absolute address of each element, the group would
be laid out as follows
AC D
A( 2)
A( 3)
A( 4)
A(CS)
A( 6)
ACT) c(1)
A( 8) C(2)
AC9) Cc(3)
A(10) C(4)
C(5)

and the spread of the group would be 11 words. The uppermost element
in this list or layout is A(1); thus if we were to place this group into
memory from the top down, A(1) would be the element that would
determine the placement of all other elements since it would have to fit
into the next available location. Let us assign this key element the relative
address of 000. The element C(1) would then have a relative address of
—006, and the last element in the group (C(5)) would have the relative
address of —010. Subsequent to these relative assignments, all other groups
would have to be scanned to locate other occurrences of the same variables.
Thus with the statements

DIMENSION A(10),C(5),X(3),Y(10)
EQUIVALENCE (A(8),C(2)),(X(1),Y(1)),(C(5),Y(3))

which contain the same dimensions of A and C as before with the same
equivalence group, we would find that after relative addresses have been
assigned to A and C, the third group also contains a reference to the array C.
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Thus the Y array can be brought into relation with the elements of the
first group and may be assigned relative addresses. Thus Y(1) will have a
relative address of —008, and the lower limit of the group will be at —017.

The variables A,C and Y are now in a single grouping. A further scan
shows that the only remaining group contains a reference to Y, and thus its
associated variable (X) is also part of the grouping. Since the first element
of the X array is equivalent to the first element in the Y array, their relative
addresses must be the same; that is, the relative address of X(1) is —008.
Further, since the X array does not extend the spread of the grouping, the
lower limit relative address is still —017. The final arrangement of these
arrays is

000 A( 1)
—001 A( 2)
—002 A( 3)
—003 A(C 4)
—004 A( S)
—005 A( 6)

—006 ACT) Cc(l)
—007 A( 8) C(2)
—008 A(C 9) C(3) Y( 1) X(1)
—009 A(10) C(4) Y( 2) X(2)

—010 c(5)  Y(3)  X(3)
—011 Y( 4)
—012 Y( 5)
—013 Y( 6)
—014 Y( 7)
—015 Y( 8)
—016 Y( 9)
—017 Y(10)

At this point, all groups in the EQUIVALENCE statement that were inter-
connected have been eliminated, and a list of variables whose permanent
addresses may be assigned has been built up. Scanning the temporary rela-
tive addresses of the arrays in this list, we find that the highest address has
been assigned to the first element of A. Thus this element can be placed in
the next available absolute address, and all other elements and arrays can
be given permanent addresses. The next available location for subsequent
assignments may be computed from the lower limit relative address.
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It may appear unnecessary to search for the largest temporary address
since that first one assigned happened to be the largest; however, if the
EQUIVALENCE statement had been written as

EQUIVALENCE (C(2),A(8)),(X(1),Y(1)),(C(5),Y(3))

then
C(1) would have been assigned the relative address of 000
A(1) -+006
Y(1) —002
X(1) —002

and the lower limit address would be —011. It would be possible to adjust
all relative addresses so that the highest address is 000 at all stages of the
process, but such repeated adjustment would be wasteful of time and can
be easily omitted and replaced by the final search for the maximum relative
address.

This procedure of tracking down the implicit groups in an EQUIVALENCE
statement and assigning relative addresses can be repeated until all groups
have been eliminated and, in effect, the EQUIVALENCE statement is empty.

Once all variables mentioned in the EQUIVALENCE statement have been
assigned permanent addresses, the list of DIMENSIONed variables must be
scanned to assign addresses to the remaining arrays. These may be arranged
sequentially through the available memory. The process is shown in Fig.
4.10.

An Extension to the Equivalence Concept

USASI standard FORTRAN specifically states (Sec. 7.2.1.4) that the
element in an EQUIVALENCE group may not be a parameter of a sub-
program. This is mainly because of the difficulty in implementing a routine
capable of handling all the cases that could arise if an EQUIVALENCE state-
ment in a subprogram were able to contain a parameter wherever a simple
variable is permitted by the standard. Further, the mention of the elements
associated with or equivalenced to this parameter in other statements within
the subprogram would require special handling. Let us consider the various
situations in which a parameter might appear as an element of an EQUIVA-
LENCE group in a subprogram.

Consider primarily the case in which a local simple variable in the sub-
program is made equivalent to a single element that is a parameter of that
subprogram. For example, consider the statements
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PROGRAM MAIN
CALL SUB(X)

END
SUBROUTINE SUB(Y)
EQUIVALENCE (R,Y)

END

As will be discussed in Chapter 9, the problem of referring to an argument
of a subprogram (in this case X) by way of the parameter list (in this case
the single item Y) is easily accomplished by assigning an object time loca-
tion to the parameter and placing the address of the argument into this
location by using the interface (or linking) routine. All references to the
parameter may then be made indirectly so as to pick up the address of
the argument. Thus in this example of an EQUIVALENCE statement, the
simple local variable may be assigned the same object time address as
the parameter Y and may be tagged as a parameter so as to cause the com-
pilation of indirect addresses in other statements. Thus no rules of the
EQUIVALENCE statement would be violated other than that presently in
question.

Consider the case where two parameters are placed in the same EQUIVA-
LENCE group, for example,

PROGRAM MAIN
CALL SUB(X,Y)

END

SUBROUTINE SUB(A,B)

EQUIVALENCE (A,B)

END
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This set of statements within the subprogram states in effect that, for al
practical purposes, the two parameters are to be treated as a single variable
and, in fact, if the two arguments were also equivalenced in the calling pro-
gram, no problem would occur. However, in linking to the subprogram witk
two separate arguments where each argument has a distinct value, the
question of which value is to be transmitted to the subprogram is un-
resolvable without some very special rulings. This case is similar to the rule
that states that two elements that appear in COMMON may not be equiva-
lenced, and therefore a small addendum to this rule would not seriously
affect the meaning of the EQUIVALENCE statement.

When a local variable is equivalenced to an element in an array that is
a parameter of the subprogram, a solution is not unattainable and in fact is
quite practical. Consider the statements

PROGRAM MAIN
DIMENSION Y(50)
CALL SUB(Y)

END
SUBROUTINE SUB(Z)

DIMENSION Z(50)
EQUIVALENCE (Z(20),R)

END
In the subprogram a single data word is to be reserved to contain the
address of the first element of the argument which corresponds to the
parameter Z, and a special computation is required to locate each element
in the array. Thus if the compiler sets a special tag in the symbol table
against the name R, it is possible for all references to that variable to be
compiled as a reference to the parameter Z with a computation to locate the
actual placement of the value that is assigned to R or in which the result of
some computation is to be stored. That is, whenever R appears in the sub-
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program, a set of instructions would be inserted into the object program
which would locate the address of the parameter Z(20).

Finally, consider the case in which a variable that is a parameter is
equivalenced to a local array in the subprogram:

PROGRAM MAIN
CALL SUB(M)

END

SUBROUTINE SUB(N)
DIMENSION L(10)
EQUIVALENCE (N,L(3))

END

At obiject iime, the memory word which is reserved for the. parameter N
contains the address of the variable M and is tagged as a parameter so that
all references to N are made indirectly so as to pick up the address of the
argument. However, since L(3) is equivalent to N, any reference to an
element in the L array has to be made on the basis of a special sequence of
instructions which will locate the element needed. That is, a set of instruc-
tions which will compute the base of the array from the address contained
in N must precede each reference to an element in the array.

However, if an element of the local array is equivalent to a single varia-
ble, then the elements that are not mentioned in the EQUIVALENCE statement
must be implicitly equivalent to the words surrounding the base variable.
In the above example, L(1) is implicitly equivalent to the second word
above the word used to store M, and L(10) is equivalent to the seventh
word below M. Thus there is a violation of rule 2. Similarly, in the previous
case, if the array defined in the subprogram uses elements that are outside
the range of the argument array, rule 2 is violated and spurious results may
arise in any other statement that uses these elements.

In summary, EQUIVALENCE statements in subprograms that involve
parameters of the subprogram are allowed provided that (a) no two (or
more) parameters appear in the same parenthesis group or can in any
way be implicitly equivalenced and (b) the local variables in a group are
restricted to simple variables.
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Control Statements

There are eight types of control statements:

GO TO statements,
arithmetic IF statements,
logical IF statements,

CALL statements,

RETURN statements,
CONTINUE statements,

DO statements and
program control statements.

This chapter will be limited to only six of these statement types; CALL and
RETURN will be discussed in Chapter 9 in conjunction with considerations
of subprogramming and the techniques of compilation within subprograms.
Program control statements do not, in fact, contribute significantly to the
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algorithm described by the program and are, in general, compiler or
machine (as opposed to language) oriented in their implementation. In
particular, the STOP statement in either form:

<STOP statement> := STOP { <digit>}3|STOP

causes the termination of the program at execution time. However, the
manner of termination depends on the specifications of the monitoring sys-
tem, if one is present. In an unmonitored system, such as used on smaller
computers in an open shop, it is satisfactory to allow the program to halt
the computer and to expect the operator to take over control. In a super-
vised operation, control should be returned to the monitor which will clean
up the work areas and provide the system and programmer with informa-
tion determined by the designers. Thus in the latter case, the computer will
not in fact STOP but rather the execution will be terminated.

On the other hand, the execution of a PAUSE statement does actually
cause the computer to hesitate, though the degree of hesitation is a function
of the system. For example, in both an unsupervised and supervised system
the computer may cease operation and wait for operator intervention,
whereas in a time-shared operation the execution of the program may
cease while another program is executed and only after the appropriate
information has been received by the system will the program be placed
in the queue for further execution.

Similarly, in both program control statements, the display of the string
of digits, if present, is determined by the compiler writer or specifications of
the monitor system. For example, in some systems the string of digits is
displayed in a light display, whereas in others the string is output through
a printer or typewriter.

Statement ldentifiers

Since the compilation of control statements is heavily dependent on the
handling of statement identifiers in the symbol table routines, let us review
the situations which may occur in recording statement number references
in a one-pass system.

Case 1. Reference is made to a statement number that has already been
encountered in the program. In this case the symbol table must contain:
(a) a statement number tag, (b) a representation of the number, (c) the
object time address of the first instruction (or first word) of the referenced
statement, and (d) a tag to indicate that (c) is defined.

121



CONTROL STATEMENTS

Case 2. Reference is made to a statement number not yet encountered.
Then a symbol table will be created, containing (a) a statement number
tag, (b) the representation of the number, (¢) the object time address of
a data word that will eventually contain the object time address of the first
word of the referenced statement, and (d) a tag to indicate that (¢) is an
indirect address.

At the time that the statement number is encountered, tag (d) should
be investigated, and if the tag indicates that (c) contains a direct address,
then the statement number is doubly defined and an error message should
be emitted. If the statement number is not found in the table, then the data
for case 1 should be generated. When case 2 has already occurred, the
object time address of the statement must be provided to the loader routine
for placement into the reserved data word. At the same time, address (c)
should be updated to the actual instruction address and tag (d) set
accordingly.

GO TO Statements

Let us now consider the compilation of the unconditional or assigned
GO TO statements. That is, the statements

<GO TO statement> := GO TO { <statement number>> |
<integer variable> !

In the first case above, in a one-pass compiler, the form of the compiled
instruction depends on the previous encounter of the statement number. In
case 1, the instruction may be compiled as

B Address(n)

where Address(n) is the actual object time address of the statement
labeled n.
In case 2, where the reference is forward, compile

B —Data(n)

where Data(n) is the address of the object time data word that contains
the actual address of the statement labeled », and the minus sign preceding
the address portion of the symbolic instruction indicates indirect addressing.

Alternatively, in case 2 the compiled instruction in a one-pass system
may be left blank (or filled with any arbitrary address) and then be overlaid

T B is the mnemonic for BRANCH or unconditional JUMP.

122



GO TO STATEMENTS

with the actual address by the loader routine. To accomplish this, it would
be necessary to append a list of addresses of incomplete instructions to the
preliminary entry in the symbol table containing the data on the statement
number, The acceptability of such a procedure depends on considerations
of available memory at compile time, a specialized loader and extra loading
time, or simply the extra cost of implementation.

In the case of the assigned GO TO statement, the instruction must always
be compiled as an indirect branch, since the address can never be deter-
mined at compile time; hence GO TO o compiles to

B —Data(a)

where Data() is the object time address of the variable q.
While considering the assigned GO TO statement, let us consider the
ASSIGN statement. The general form is

<ASSIGN statement> .=
ASSIGN < statement number>TO<simple integer variable>

In case 1, where the referenced statement has already been encountered,
we may compile
TENA Address(n)
ST Address (i)

where Address(n) is the object time address of the first word in the refer-
enced statement and Address(i) is the address of the variable i. In case 2,
we must use a data table reserved word, which will be filled with the address
of the referenced statement at load time, to compile:

T LDA Data(n)
ST Address(i)

An interesting situation may occur in systems that permit the assigned
GO TO statement and have subprogram capabilities. If a statement number
has been assigned to an integer variable, then that variable may be used as
an argument in a subprogram CALL. Hence, within the subprogram an
assigned GO TO statement that uses that variable can cause control to be
returned to the calling program without a RETURN statement or necessarily
executing the statement immediately following the CALL statement.

¥ LDA is the mnemonic for LOAD ACCUMULATOR with the data at the address. ST is
the mnemonic for STORE the data in the accumulator into the address in the instruction.
ENA is the mnemonic for ENTER ACCUMULATOR with the data in the address portion of
the instruction.
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For example, consider the following job:

PROGRAM T1
ASSIGN 19 TO K

CALL T2(X,K)

——————
19 ... <«
END
Normal SUBROUTINE T2(A,l) Abnormal Return
Return
IF(A)1,2,2
1 GO TO |
2 RETURN
END

While one may argue that this is an illegal use of an assigned GO TO
statement and a CALL statement, there is no specific rule prohibiting the
use of a formal parameter in the assigned GO TO statement.

As will be discussed later, formal parameters have no private existence
since they take values from the CALL arguments. Thus, the variable | will
contain the address of the argument K (in this case), and K will contain the
address of the statement labeled 19. Now in the calling program we may
compile

B —K

for the FORTRAN instruction GO TO K, but to compile

B —I
in the subprogram would lead to an error since | contains not —K but the
address of K itself. Thus if the variable in an assigned GO TO statement is

a formal parameter, we must compile the set of instructions
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Contents of —1 to ACC, i.e., contents of K to

ACC, i.e., address of 19 to ACC.

Store contents of ACC in next instruction; i.e.,

put address of statement numbered 19 in the
next instruction.

LDA —I
ST  *+1
B *— %

Branch to address to be filled in.

With this scheme, the statement number address may be transmitted through
many levels of subprogram provided that all references to formal parameters
in a subprogram are addressed indirectly. Thus, the following program
would execute correctly with cascading indirect addressing:

PROGRAM T1

ASSIGN 19 TO K

CALL T2(AK)

19 ...

END

SUBROUTINE T2(X,1)
CALL T3(X,})
RETURN

END

SUBROUTINE T3(Y,J)

CALL T4(Y,J)
RETURN
END

T The symbol * stands for the address of this instruction.
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SUBROUTINE T4(Z,K)

GO TO K

RETURN

END

The statement CALL T2 in the main program will place the address of K

into the space reserved for the formal parameter I. CALL T3 in subroutine T2
will transfer —I to J since all references to formal parameters in a sub-
program are referenced indirectly. CALL T4 will transfer —J to K. Then the
compiled instruction LDA —K in subprogram T4 will chain through three
levels of indirect addressing to pick up the address of the variable K in the

main program and hence place the address of statement number 19 in the
accumulator. This address will then be stored in the branch instruction.

In computers without cascading indirect addressing, only one level of
assigned GO TO may be permitted in a subprogram, and with this restriction,
all assigned GO TO statements using formal parameters should be rejected.

Let us now step aside from these machinations on the assigned GO TO
and consider the computed GO TO, which takes the form:

<computed GO TO statement> := GO TO( < statement number>
{,<statement number>} 2 ) ,<integer variable>

In its standard form, this may be compiled to the instructions:

ENA *-+3 Address of branch to ACC

ADD | Add contents of address |
ST =41 Store in branch instruction
B -0 Branch indirectly

This set is to be followed by a list of addresses of the statement numbers,
modified to indirect addresses, if necessary, for forward references.

Such a compilation does not protect the user from attempting to use a
value of the index that is zero, negative or greater than the number of items
in the parenthesized list. This would be an object time error, and thus any
instructions to check this value must be included in the target language.
However, the rules of the language do not provide any directions as to the
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course of action to be taken if the index is greater than the number of
items. In fact, the USASI specification defines the statement as follows:

7.1.2.1.3 Computed GO TO statement. A computed GO TO statement is of
the form:

GO TO( ky, koy ..., k)i
where the k’s are statement labels and i is an integer variable reference. . ..
Execution of this statement causes the statement identified by the statement
label k; to be executed next, where j is the value of i at the time of execution.
This statement is defined only for values such that 1 <j< n.

Irrespective of the bland statement that this statement is defined only
within the appropriate range, most compilers, or, in fact, the object time
routines, provide for the contingency of a value of the index outside the
range. For example, the FORTRAN 3600 specifies that for the purpose
of execution, a value of the index greater than the number of items in the
list is taken to have a value equal to the limit. That is, if j > n, the next
statement to be executed will be that labeled k,. On the other hand, KINGS-
TON FORTRAN 1II uses modular arithmetic to pick out the appropriate
statement number based on the limit. That is, j is taken to have the value
j — n(int(j/n)) where int is the integer function of the argument.

Such routines take considerable storage and cannot be stored (or com-
piled) efficiently in line when several computed GO TO statements are
anticipated in a program. Using a special routine within the system, we may
compile the following:

ENA *+2

B COMGO
Address (i)
n
Address(k;)
Address(k2)

Address(k,)

where COMGO is the entry address to a routine that checks the value of
the index against the limit (provided by the compiler in the appended list),
corrects the value if necessary and then picks out the correct statement
number address from the list. Since the accumulator contains the address
of the list on entry to this routine, the list may be accessed from the routine
easily, Similarly, knowing both the location and the size of the list, the
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compiler will have no problems in providing the correct starting location
for the next set of instructions.

Before continuing with the discussion of control statements, let us con-
sider the implementation of some nonstandard features which do not cause
the compiler writer any major problems and do not detract from the avail-
able space at object time or speed of execution. For example, if one is pre-
pared to implement the assigned GO TO statement using a simple integer
variable, then there is little difficulty in extending the power of this state-
ment to include subscripted variables. As will be shown later, the compilation
of a subscripted variable reference is merely the use of the algorithm to
generate the address of the variable. Thus if reference is made to the arith-
metic scanning routine to pick out the address of the variable instead of
simply referring to the symbol table routine, statements such as

ASSIGN 103 TO L(3*I+5)

GO TO L(J)

are compilable and executable. However, in a single accumulator machine,
care must be taken to ensure that the computations to determine the address
of the element in the array do not conflict with the load and transfer in-
structions necessary to place the address of the statement number in the
branch instructions. Thus the simple pair of symbolic instructions for the
compilation of the ASSIGN statement must be preceded by those necessary
for the determination of the element address. The above ASSIGN statement
might be compiled to:

ENA =3 Enter literal 3 into the ACC.
MUL | ACC+| to ACC.

INA =5 Increment the ACC by literal 5.
RVSG Reverse the sign of the ACC.
INA  Address(L(0)) ACC+base of array L to ACC.
ST *4-2

ENA  Address(103) Address of first word of reference
statement to ACC.
ST *—k Store ACC in location to be provided.

If the arithmetic expression routine provides information regarding its
actions to the calling routine, then the calling routine can compile in one
of two manners. If the arithmetic expression routine provides the current
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address of the result of the compilation as it would appear at object time,
then the calling routine is able to determine whether in line instructions
have been compiled. For example, if the second element of the ASSIGN
statement is a simple variable, the arithmetic expression routine has done
no work past that of determining the address of that variable; thus the call-
ing routine will report that the address of the result is that address. On the
other hand, if the arithmetic expression routine is forced to compile in line
instructions the address of the result is the accumulator. On the basis of
these reports, the computer will compile

ST 42
ENA Address(n)
ST *x—=%

for the case when the called routine reports that the result is in the
accumulator, or

ENA Address(n)

ST i

when the result is not in the accumulator.

Similarly, if variables are allowed in a GO TO statement, then it is
feasible to use the same process in connection with the computed GO TO
statement such that the following statement would be valid:

GO TO(1, 1, 17, J(K),99),L

where both | and J(K) have appeared on the right-hand side of a previously
executed ASSIGN statement. Once again, however, the order of processing
in the compiler must be revised. For example, when the list contains only
statement numbers and simple variables, the list appended to the instruc-
tions that link to the COMGO routine will contain either the actual address
of the statement referenced provided that the statement has already been
encountered or an indirect address to a forward reference or to a variable
reference. When subscripted variables are included in the list, the one for one
ordering of the object time list will be disturbed by the presence of instruc-
tions to compute the actual location of that element. Thus we may propose
to perform all these subscripting instructions before entering the COMGO
routine, placing the appropriate addresses into the appended list. However,
this technique would mean that prior to each and every execution of the
computed GO TO all subscripting computations would be executed whether
or not that reference were used. This could seriously slow down the execu-
tion of this type of statement.
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Alternatively, since it may be recognized that this computed GO TO
statement causes a complete break in the sequence of execution of the pro-
gram, it would not affect the operation materially if an extra routine were
slipped in between a branch from the GO TO statement routine and a branch
to the final destination. Thus if the appended list contains the addresses of
the first instructions in routines to compute the address of elements in arrays,
instead of addresses of the next instruction in the program (direct or in-
direct), the computation of the location of the element in the named array
need only be performed when necessary. Consider the GO TO statement:

GO TO (13,K,7,J(1), M(N)), L

which would be compiled to the sequence:

ENA *42 Address of list to ACC
B COMGO Jump to COMGO routine
Address(L)
=5
Address(13)
—Address(K)
Address(7)
Address(LINK1) Address of subscripting routine
Address (LINK2) Address of subscripting routine
LINK1 LDA | Compute address of J(I)
RVSG
INA  Address(Base of J)
ST *41 Store address
B —0 Branch indirectly
LINK2 LDA N Compute address of M(N)
RVSG
INA  Address(Base of M)
ST * 41 Store address
B -0 Branch indirectly

Since the index of a computed GO TO merely provides a source of data,
this extension can be carried further with any integer expression in place of
the index such as:

GO TO (1, 1, 17, J(K), 99), 11+ (J3*+2) /3

This expression may be computed in the place of an index before entry to
the COMGO routine, and the location of the result may be placed into the
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appropriate word location in the appended list. That is, the result of this
calculation must be placed into temporary storage if arithmetic operations
are involved in the computation; if the index is merely a subscripted vari-
able with a variable subscript, the address of that element may be placed
directly into the list. Thus the index

14+J*3
would compile to the instructions
LDA J J to ACC
MUL Address (3) ACC=*3 to ACC
ADD 1 ACC+1 to ACC
ST  TEMP ACC to temporary location

The appended list would then contain the address of the temporary location
provided by the compiler. On the other hand, if the index is a subscripted
variable with a variable subscript, the subscripting computations must be
performed before entry to COMGO and the address of the element put into
the list at object time. That is, an index of 1(J) would cause the compila-
tion of the following instructions

LDA ) J to ACC

RVSG Reverse sign of ACC
ADD Address(Base of 1)

ST *43 Store address in list

Indices that are simple variables or subscripted variables with constant sub-
scripts may be compiled with no extra instructions and with the actual
address of the index in the appended list.

Irrespective of these extensions to the computed GO TO statement, the
overall power of the statement is somewhat diminished when the exten-
sion to the assigned GO TO statement to include subscripted variables is
permitted.

IF Statements
FORTRAN I[F statements may take one of four possible forms:

<IF statement> := |F( <arithmetic expression>) <statement number>
{,<statement number>} %]IF (<logical expression>)
{ < statement number>{,<statement number>}]|
<FORTRAN STATEMENT body>}!
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The compilation of the interior of the parentheses of the IF statement is
identical to that of the right-hand side of an arithmetic assignment state-
ment or a logical assignment statement, respectively, and will be discussed
in Chapter 8. In fact, the same routine that will compile these expressions
may be used to compile the interior of the IF statement. In either case, how-
ever, the IF generator need only be aware of the type of interior expression
(arithmetic or logical) and take into account that the result in either case
will be left in the accumulator.

In the standard IF statements, the difference between those statements
that reference statement numbers and those that contain the actual state-
ment to be executed if the result of the expression is true, may be recog-
nized easily by examination of the first character following the closing
parenthesis. Only when an actual FORTRAN statement body is defined is
the next character alphabetic. In fact, an examination of the possible state-
ment bodies in the FORTRAN language reveals that the next character
must be alphabetic in this case.

Once the latter type of IF statement has been recognized, there are several
distinct steps to be undertaken:

1. On the basis that the result of the execution of the logical expression
is residing in the accumulator and that a zero value indicates falsehood and
unity represents truth, compile the single instruction

BZ  x—=

where BZ is the mnemonic for BRANCH ON ZERO ACCUMULATOR. The
address of this instruction is left blank since the location of the next in-
struction to be executed is not known at this juncture. This instruction
when executed at object time will cause control to branch around the set of
instructions that will be compiled from the FORTRAN body when the re-
sult of the execution of the logical expression is false. Also, the address of
the above instruction is stored for future reference.

2. Compile the FORTRAN body as any other FORTRAN statement
by using the SIEVE and the appropriate generator. Note that the standard
forbids the use of another IF statement (among others) as a statement body
since this would be tantamount to permitting recursion in the language.
If this were allowed, the address of the BZ instruction generated in step 1
would have to be placed in a push down list. In any case, the need for a
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subsequent IF statement is made unnecessary by the use of the logical
operators .OR. and .AND..

3. After compiling the statement body, insert the address of the next
instruction, which is now known, into the BZ instruction by referencing the
address that was stored by step 1. If the compiler is a load and go system,
this insertion is simple; but when the object code is transmitted to some
external device, the loader must overlay this address correctly, and it must
be assured that the instruction is loaded before the address portion is over-
laid. In a multipass system, the address portion of the BZ instruction may
be filled in with a symbolic address and that address be used to label the
instruction of the next statement.

In contrast to compilation of the GO TO where it is proposed that an in-
direct branch to a data word be used when the statement number has not
been encountered, backtracking is more feasible in the case of an IF state-
ment since it is known that the only instruction to be overlaid is the BZ
instruction. Further, this process of backtracking to fill in the address is
within the same generator, whereas in the case of the GO TO, backtracking
must be accomplished by the routine that recognizes statement numbers
in the label position of the FORTRAN instruction.

The process of compiling the branches to other types of IF statement
may be combined into a single scanner and checker. Given a three element
list such as a;, a» and as, the following algorithm will suffice:

1. Extract the first number and store its address (from SYMTAB) in
the word a;.

2. Tf the delimiting character following the extraction of the first number
is the end of the statement, then the IF statement is of the type

IF(<logical expression>) <statement number>
and may be compiled as simply
BNZ (611)

where BNZ is the mnemonic for BRANCH ON ACCUMULATOR NONZERO,
and (a;) is the address of the referenced statement. Following this com-
pilation, the IF generator may be exited.

3. Extract the second number and store in a..
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4. If the delimiter to the second number is the end of the statement,
the class of IF statement is that of

IF(<logical expression>) <statement number>,<statement number>

where the next statement to be executed if the result of the execution of
the logical expression is true is that referred to first in the list of exits and
if false, the next statement is that labeled lastly. With the data stored in
a; and a, this IF statement may be compiled in one of two manners, either

BZ (as) If false, branch to second statement
reference.
B (ay) If true, jump to first reference.
or BNZ (a;) If true, branch to first statement
number.
B (az) If false, go to second reference.

5. Extract the third statement number and store in as.

6. By default, the IF statement must be of the class of arithmetic IF
statements, that is,

IF<arithmetic statement>) <statement number> {,<statement number>} 2

where the statement numbers refer to the exits corresponding to the results
which are negative, zero and positive, respectively. By using the data stored
in the elements a;, a, and a3, the following instructions may be compiled:

BZ (ay) Branch on zero accumulator to address
contained in as.

BN (a;) Branch if accumulator is negative to
address contained in a;.

B (a3) Branch to address contained in a;. As
a result of the previous branches this
instruction is effectively a branch on
positive accumulator.

Note that since the statement numbers were originally contained in the «
elements, these elements may be replaced before compilation by the actual
or indirect addresses of the referenced statements. Thus in the above in-
structions the elements have been enclosed in parentheses to show that the
addresses are to be obtained from the elements ¢ at compile time.
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The seemingly peculiar disarrangement of these branch statements is
chosen to overcome the peculiarity of some computers that give a sign to
zero values. This occurs because in some machines the sign of the original
accumulator value is retained when the result of a single operation is zero.
Similarly, the second instruction is for a negative condition since, in
some computers, the speed of execution of a test for a negative value is
faster than that of the other tests. The order of the tests may, therefore, be
machine dependent though in theory there is no particular significance to
the order described above.

Let us now discuss the possibility of allowing statement identifier variables
in IF statements. In standard IF statements, the distinction between those
statements containing statement numbers and those containing a statement
body after the closing parenthesis may be made by examining the first
character following the parenthesis. However, if statement identifier vari-
ables are allowed, this test is not valid. Compared to variables used as a
data source, such as in the index to a computed GO TO statement, which
can easily be replaced by a complete expression, a statement identifier vari-
able is merely the source of an address to which a reference may be made
and, therefore, cannot be replaced or influenced by an expression. Thus the
statement identifier variable is similar to the variable that occurs on the left-
hand side of an arithmetic assignment statement. If the routine that scans
arithmetic statements were divided into two parts, these would be:

1. The right-hand side scanner, which compiles instructions to execute
the specified operations and leaves the result (a value) in the accumulator.

2. The left-hand side scanner, which compiles subscripting, if neces-
sary, and provides the address of the variable. In an arithmetic assignment
statement, it is into this address that the result of executing the right-hand
side is to be placed.

Hence, the left-hand side scanner will check for the presence of any
operator and “complain” if necessary, and from the result of the scanner,
one may determine the difference between the two main types of IF state-
ment. In particular, the scanner will probably believe that a statement
number is an integer constant, which is not a valid “loadable,” thus com-
plain. However, if the manner of complaining is not the output of an actual
error message, this task being left to the calling generator, then this special
routine will enable the IF generator to scan across to the first delimiter.
If this delimiter is a comma or the end of the statement, then the IF state-
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ment is the type that contains statement numbers (in the standard form),
whereas if the delimiter is not one of this type, further scanning is necessary.
This task may be taken over by the SIEVE routine and the statement handled
as a normal logical IF statement with an embedded statement body. Some
statement bodies, unfortunately, may be taken for variables, and thus exact
specifications must be laid down with regard to the inclusion of special
delimiting characters. For example, the exclusion of the spaces between the
elements of the standard GO TO statement, such as

GOTO100

could cause confusion. However, if we insist that the blanks be included,
then the left-hand scanner will light upon the blank as the delimiter.
Similarly, an input statement without a blank between the keyword and the
statement number or logical unit specifications could be scanned in either
of two ways: the input statement could be taken for either a list of simple
variables or a subscripted variable. For example, consider the scanning of
the following statements:

IF(PASS.EQ.1) READI,A
and
IF(IT.EQ.THAT)READ(12,61) A

If the embedded blanks are not included as part of the language, then the
only alternative to obtain a correct scan would be to reserve certain vari-
able character combinations such as those beginning with the characters
READ, WRITE, GOTO, etc. However, the exponents of FORTRAN have
always been able to claim that the language contains no reserved words.
Further, if the extension of the language is such that previously valid pro-
grams will no longer compile or execute correctly, then the extension itself
must be considered invalid.

When statement identifier variables are also subscripted, the order of
executing the subscripting instructions will substantially affect the efficiency
of the object program. That is, as with the extended computed GO TO, it is
inefficient to perform the subscripting instructions when an identifier is not
to be used as the exit to the statement. Thus any compiled instructions for
subscripting that the left-hand scanner generates must be saved in the com-
puter memory before being added to the object code. That is, if the sub-
scripting instructions are placed in line as the scanner generates them, the
following arrangement might occur in the worst case (the arithmetic IF with
subscripted statement identifier variables) :
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1 Evaluate parenthesized expression.
ST TEMP Store result in temporary location.
} Evaluate subscript of n..
LDA TEMP

BZ Address(ny)

Evaluate subscript of n;.
LDA TEMP
BN Address(n;)

|

& Evaluate subscript of 7.

B Address(n3)

To alleviate this excessive amount of coding as well as the execution of un-
necessary instructions at object time, the subscript calculations should be
executed after the test of the result of the parenthesized expression:

Evaluate parenthesized expression.

BZ S2 Branch to subscript routine no. 2.

BN Sl1 To routine no. 1.

B S3 To routine for positive case.
sl ... 1

... Evaluate subscript of n;.

B Address(n;)
S2 ...
Evaluate subscript of n,.

B Address(nz)
S3 ...
Evaluate subscript of n.

B  Address(ns)
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Obviously, if the statement identifier variable is unsubscripted, this extra
set of instructions is not necessary, and the exit may be made directly from
the first set of tests.

The DO Statement

The FORTRAN DO statement, in its standard form, is a combination of
statements. In fact, the general statement

DO 1 I=JKL

can be implemented equally as well by the statements:

1=J
2 ...
1 I=1+1
IF(LGT.K)11,2
11 ...

where the statement identifiers 2 and 11 are provided by the compiler and
do not, in fact, conflict with other statement numbers in the program. In
symbolic code, the above DO statement could be compiled as:

LDA J
ST I
NEXT
ST1 LDA |
ADD L
ST 1
SUB K
BN  NEXT
BZ  NEXT

When the parameters of the DO list are integer constants, advantage should
be taken of any machine instructions that use their address portion as the
actual data to be used in the instruction. That is, if the machine has instruc-
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tions such as INA (INCREMENT ACCUMULATOR) or ENA (ENTER ACCUMU-
LATOR) where the increment or value to be used is actually within the
instruction itself, then data table storage space may be saved by using
these instructions where possible. Thus the FORTRAN statement,

DO 13 N=1K,3
may be compiled to:

ENA =1 Literal 1 to ACC
ST N
NEXT ...

ST13 LDA N N to ACC
INA =3 Increment ACC by literal 3
ST N '
SuB K
BN  NEXT
BZ NEXT

When a DO statement occurs in a subprogram and any one of the param-
eters or the index itself is a formal parameter, indirect addressing references
to the address of that formal parameter will take care of the necessary
chaining (or cascading) through to the actual value of the element.

The main drawback in implementing the DO statement is the necessity to
split the object coding between the beginning and the end of the range.
One technique for obtaining this split is to add a set of special information
to statement number entries in the symbol table.

When a DO statement is encountered, the statement number defining the
last statement within the range is not yet defined. However, the statement
number may already be in the symbol table as it may have been referenced
in an exterior DO range. Since the address is not yet defined and cannot be
referenced by any other control statement from outside the range, a special
tag may be included in the symbol table entry which will define this state-
ment number as the termination of a DO range. Emanating from this symbol
table entry will be a linked list containing five entries per sublist:

NEXT, LIMIT, INCREMENT, INDEX and LINK

where LIMIT, INCREMENT and INDEX are the addresses of the parameters in
the DO statement; NEXT is the address of the first instruction in the DO
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range after the initialization instructions; and LINK is the address of the next
sublist (which will be undefined if this is the last sublist). That is, this is the
data pertinent to the innermost DO range that uses this statement number
up to this point in the compilation. This list and its sublists are constructed
as the DO statements are encountered and are destroyed as the range termi-
nating statements are recognized. The last sublist emanating from the symbol
table entry refers to the innermost DO range for which object time instruc-
tions should be generated.

As originally conceived a DO statement was based on the control of the
range by means of index registers where each register consisted of three
parts: index, limit, increment. In such a machine, the incrementation and
testing of the index could be performed in a single instruction, and when a
new index value was less than the limit, this instruction would also transfer
control to the instruction defined by the address in the instruction address
field. Otherwise, the normal sequence of instructions would be followed.
Only one instruction was split off to reside at the end of the range, and the
instruction to initialize the register (all parts) occurred at the location in
the object code equivalent to the location of the DO statement in the source
program.

This mode of implementation created several restrictions:

1. The depth of DO nests could not exceed the number of available index
registers.

2. The index of the DO loop, i, for example, was not related to the vari-
able 7 in the rest of the program, but was related to all the references to i
within the range.

3. Because of the limited availability of index registers, the same register
had to be used for several unrelated loops. Hence, since the compiler could
not ascertain the logical flow of the program, a DO index had to be con-
sidered undefined outside the range.

4. The index could be incremented only.

5. The range had to be traversed at least once, even if the original
(initial) value of the index was greater than the limit.

6. Real variables or constants were not permitted as elements of the DO
statement.

7. For obscure reasons, expressions were not permitted as elements of
the list.
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8. The value of any element in the DO list could not be altered within
the range since their values were stored in inaddressable registers.

Let us now consider these restrictions in the light of the type of imple-
mentation described in this chapter.

1. Since index registers are not utilized, the depth of a DO nest is
limited only by the available space at compile time for storing the list of
uncompleted DO statement elements.

2. Since, in the original implementation, the index was unrelated to a
similarly named variable in the rest of the program and was, in fact, stored
in a register, the initialization of the range could only be accomplished by
entering the range through the DO statement. In the implementation pro-
posed herein, the index variable and parameters are related to the similarly
named variables in the rest of the program; the programmer can cause con-
trol to enter the range abnormally provided that the work of the initializa-
tion phase is simulated.

3. By the same reasoning, which allows the overriding of the second
restriction, the value of the index will be available outside the range
either after a normal completion or through a branch out without normal
termination.

4. If the implementation of DO loops is not dependent on index registers,
then the restriction of a unidirectional indexing is not necessary except that
there may be a need to redefine the meaning of a DO statement. USASI
Basic FORTRAN (Sec. 7.1.2.8) states that:

The action succeeding execution of the DO statement is described by the

following five steps:

1. The control parameter is assigned the value represented by the initial
parameter. This value must be less than or equal to the value represented
by the terminal parameter.t

... after execution of the terminal statement, the control variable...is
incremented by the value represented by the associated incrementation
parameter.

4. If the value of the control parameter after incrementation is less than or
equal to the value represented by the associated terminal parameter, the
action described in step 2 (executing the range) is repeated...If the
value of the control variable is greater than the value represented by its

T Author’s emphasis.
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associated terminal parameter, the DO is said to be satisfied and the
control variable becomes undefined.

If these restrictive specifications were revamped slightly, a standard DO
statement could execute as specified but, at the same time, allow some
desirable variations.

For example, if the restriction that the initial parameter value be less than
or equal to the value of the terminal parameter is removed, then the relative
values of the initial and terminal parameters are irrelevant and merely define
a domain of values within which the DO range is to be executed. In para-
graph 3 of Sec. 7.1.2.8, a negative incrementation should be allowed. In
paragraph 4, the pertinent wording might be changed to read:

4. If the value of the control parameter after incrementation is within the
domain of the initial and terminal parameter values, the action described
in step 2 ...If the value of the control parameter is outside the domain
of the initial and terminal parameters, the DO is said to be satisfied.

The last statement, and the control variable becomes undefined, is pur-
posely omitted, so that if the loop is terminated normally, the control vari-
able will have the value at which the range was not repeated.

If the direction of the incrementation of the DO control variable (or
index) is unknown at the time of compilation, the most efficient manner of
testing of the control variable after incrementation is to call upon a system
routine which will test the new value against the domain. In this case, the
coding generated may take the form:

LDA J Initial value to Index.
ST |
NEXT

LDA | Increment index.
ADD L
ST i
ENA *+2 Address of list to ACC.
B UNDO
Address(l)
Address(K)
Address(L)
NEXT
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where the UNDO routine collects the addresses of the elements of the DO
statement and the branching address from the appended list that follows
the statement which transferred control to the routine. This routine checks
the current value of the index against the limiting value, the test being in-
fluenced by the sign of the increment. That is, if the value of the increment
is positive, the test in the UNDO routine is less than or equal to the limit,
whereas if the sign is negative, the test is greater than or equal to.

5. At object time the DO statement is constructed so that the control
variable can only be tested after a pass through the range; thus the range
must be traversed at least once. However, under the redefinition proposed
above, the initial value of the control parameter is a limit in the domain of
values and hence is a valid value for a pass through the range. One may
argue that if the direction of incrementation is determined at the entry to
the range and is, by definition, unalterable, then the range should not be
traversed if the successive incrementation would never reach the limiting
value. For example,

DO 1 1=1,10,~1

should never cause a single execution of the range since the limit can never
be attained. In view of the proposed rearrangement, above, the range would
be executed with I=1 but not a second time with 1=0 since this value of
the control variable is outside the domain of the DO statement.

6. If the DO statement is implemented without the use of index registers,
the elements do not need to be restricted to integer mode.” However, the
compiler must be able to examine the mode and to link to an incrementa-
tion and testing routine of the appropriate mode.

7. Even when index registers are used, there is no reason to prohibit
expressions as the elements of a DO list. For example, if the arithmetic
statement scan routine is again considered as two routines, the left-hand
side scanner and the right-hand side scanner, then each element in the DO
list may be considered to be a right-hand side (executable), while the index
(or control variable) is a left-hand side variable (or loadable). In each

 One reviewer has pointed out, however, that a reason for maintaining integer mode
in a binary machine would be the difference, in operation, between the two statements:
po11=0.01, 1.00, 0.01
and
po11=1,100,1
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case, when a DO statement is encountered, the expressions are evaluated
and the results, if necessary, placed in temporary locations. For example,

DO 13 N(I+7)=K*J,N(3),I+3

would be compiled in the form:

} Compute address of N(1+7).
ST TEMP1 Store address in temporary location.
LDA K K to ACC.
MUL J ACC+J to ACC
ST —TEMPI ACC to N(1+7)
LDA | I to ACC
INA =3 ACC-+3 to ACC
ST  TEMP2 7
NEXT ...
ST13 LDA —TEMP1 N(I4+7) to ACC
ADD TEMP2 ACCH-(143) to ACC
ST —TEMP1 ACC to N(1+7)
SUB  Address(N(3)) Test against limit.
BN  NEXT
BZ  NEXT*

In this type of implementation all the necessary auxiliary computation is
performed prior to entering the DO range and therefore detracts from the
main line program, not from the DO range itself. That is, the auxiliary com-
putations are not executed each time through the range, thereby increasing
the efficiency of the range. However, since these are one-time calculations,
the values of the elements cannot be altered during the course of the execu-
tion of the range.

8. If the elements of the DO list are restricted to simple variables or con-
stants and index registers are not used, there is no need to restrict the

T Note that at this point in the compilation the symbol table would contain a sublist
appended to the entry referring to statement number 13, the elements in the sublist
being the addresses

NEXT, -TEMP1, Address(N(3)), TEMP2

¥ Note that for the purposes of this example, the UNDO routine was not used.
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alteration of the elemental values during the execution of the range. How-
ever, if subscripted variables or expressions are permitted, and the addresses
of subscripted variables and the values of expressions are computed outside
the range in the initialization instructions, then these values are fixed and
can only be altered by repeating the initialization computations. For ex-
ample, if the implementation were to compute the expression or subscript
each time the element was mentioned within the range, then such an allow-
ance could be made, but the execution time would increase considerably.
Further, the programmer would have to realize that such variations would
not be in force until the next time through the range and not immediately
after the value had been altered.

Suppose that the above example (DO 13 N(1+7)=K*J,N(3),I+3) were
entered with | set to 3 and that during a traverse through the range, | was
incremented by 1. Should one consider taking the control variable value
from N(10) for the remainder of the range or from N(11) the value of
which may already exceed the limiting value? Or since the value of the in-
crement has been altered, should the value of the index be incremented by
1 immediately by implication of the change in incremental value or should
such an alteration wait for the normal incrementation at the end of the
range?

Hence there is some ambiguity as to the action to be taken when an
elemental value is changed during the execution of the DO range. However,
if the USASI rule book explained that alteration effects of elemental values
are only noted during the next traverse of the range except when the value
of the control variable is altered and its subscript is not, it would ease the
problem of implementation and force the programmer to conform to that
implementation.

Summary

The implementation of the ASSIGN and assigned GO TO statements in
FORTRAN-like languages leads to many extensions of the language and
possibly to some ambiguities in the syntactic analysis of the resultant state-
ments. However, some strengthening of the rules regarding the inclusion of
blanks in the statements would avoid these ambiguities. If, for example, it
were stated that a blank is a delimiter, then many problems could be
eliminated. For example, if the ASSIGN statement is implemented in its
primitive form, it should be possible to include an ASSIGN statement that
has a statement identifier variable in place of the statement number, such
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as ASSIGN | TO J. The exclusion of blanks from this statement would lead to
ASSIGNITOJ which is not ambiguous, but what of

ASSIGN ITO TO TOT ?

The exclusion of blanks in this statement could lead the analyzer to extract
the following forms:

ASSIGN | TO TOTOT

ASSIGN ITOTO TO T
or

ASSIGN ITO TO TOT

plus several statements which have too many second variables and thus be
in error.

Similarly, it seems possible to implement, in the DO statement, a variable
range execution by replacing the statement number in the defining statement
by a statement identifier variable. The implementation of this feature, how-
ever, is best left to the experts.
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The relationship between input/output statement lists and their cor-

responding FORMAT statement cannot be expressed in simple fixed
terms. In particular, the control of data conversion either from internal
mode to the output mode or from external form to internal mode is some-
times under the direction of the input/output statement, while on other
occasions it is the responsibility of the chosen FORMAT statement. As a
result, the manner in which input/output statements and FORMAT state-
ments are compiled is closely related.

However, FORMAT statements cannot be compiled as a simple set of
links to system routines since such a statement refers both to input and
output. For example, a numeric specification (E,F or 1) on input describes
a transformation from external to internal mode, while on output the re-
verse is intended. On the premise that such translation routines are not
themselves reversible, the FORMAT specifications will have to be interpreted
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at object time to ascertain the correct routine with which to link. Because
of this need to interpret the FORMAT statement at object time, there is a
question as to how far it is worth translating the FORMAT statement at
compile time.

At best, the compile time translation of a FORMAT statement can only
present the specifications in a form convenient for fast interpretation at
object time. Further, if the compiler is to include in the object time routines.
a routine to translate variable FORMAT, there must be a routine to translate
source form FORMAT statements to this interpretive form. Hence, one may
argue that all FORMAT statements should be translated and interpreted at
object time. However, this has the disadvantage that object time is wasted
in favor of saving compile time. Further, special steps need to be taken to
ensure that source form FORMAT statements are not repeatedly translated
when those statements ocur in the original source program. On the other
hand, variable FORMAT statements must be repeatedly translated since the
FORMAT source form character string may have been altered by program-
ming and not only by a direct input statement. This argument assumes that
the compiler has recognized that an array name has occurred in an input/
output statement and has attached a tag to that array, this tag being set
to one value whenever the array data are manipulated and to some other
value when these data are translated by the FORMAT routine.

Even with such refinements, the accumulated object time in a series of
production runs may be such that an alternative manner of translation and
interpretation is necessary. Even though there may be a routine to translate
source form FORMAT statements in the object time relocatable routines, the
translation of source code statements still may be performed at compile
time while variable FORMAT statements are translated at object time. This
keeps object time translation time to a minimum, and only those pro-
grammers who utilize variable FORMAT will suffer from an increased execu-
tion time and a loss of available storage due to the inclusion of the variable
FORMAT translation routine. The effect of such a compromise depends on
the manner in which the total system is to be used. For example, in a com-
puting center where few programs are generated and there is a substantial
number of production runs, the saving of object time at the cost of compile
time is important. On the other hand, in an educational or research environ-
ment, where the majority of runs are compile-run sequences, it is relatively
unimportant as to whether FORMAT translation is performed at compile
time or run time provided that the translation itself is programmed as
efficiently as possible.
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The Interacting Lists

Basically, input/output in FORTRAN consists of the manipulation
and/or generation of a data string based on two lists, generated from the
1/O statement and the set of FORMAT specifications. The |/O-generated list
consists of a set of addresses, each referring to a variable, while the FORMAT
list is a set of specifications. The data string may be either an input string
waiting to be stored in internal form in memory or an empty string waiting
to be filled from the memory. Associated with each list is a pointer which,
for the purposes of this discussion, will be named:

SP data string pointer
LP 1/0 list pointer
FP FORMAT specification pointer

These pointers will traverse each list under the control of the system input/
output routine.

The FORMAT list is a set of link addresses with appropriate data so that
the pertinent routines may be entered. Owing to the schizophrenic purpose
of FORMAT statements, the link addresses merely point to another set of
tests that divert the flow of control to a pair of routines which are relevant
to input and output, respectively. However, since all data are converted in
either direction, irrespective of the input or output physical unit, and all
manipulation takes place in an internal data buffer area, these FORMAT
routines are independent of the device used. The routines given in Table
6.1 are necessary.

Each of the TYPE routines in the table (ETYPE, FTYPE, etc.) has a direct
influence on the string pointer (SP), whereas the other routines either direct
the operation of the 1/O unit (to empty or fill the buffer) or control the
FORMAT pointer (FP) to pick up a new piece of data by a new specification.

In particular, LTPAR has no direct influence on the 1/0 action but rather
prepares the RTPAR routine for possible reflection when the 1/O list is
longer than the FORMAT list. Hence the only action of the LTPAR routine is
to place the current value of the FORMAT pointer (in fact, the address of
the word to which the pointer is set) in the RTPAR routine. Similarly, the
NLPAR routine must place the value of the number of repetitions and the
return address in the NRPAR routine so that the repeated group may be
traversed the correct number of times. Since repeated groups may be nested
in a FORMAT statement, the number of repetitions and the addresses must
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TABLE 6.1
Data

Name Form i Purpose

ETYPE WWDD E-type specifications where WW = w and DD = d of Ew.d

FTYPE WWDD F-type specifications where WW = w and DD = d of Fw.d

ITYPE WWO00 I-type specification where WW is the field width of the specifi-
cation.

ATYPE WWO00 A-type specifications, where WW is the w portion of the
specification.

HTYPE WWXX . .. H-type specifications, where WW is the number of characters
in the string and XX... is the character string. Note that
in fact the actual string may be stored in BCD mode, and the
number denoted by WW may be adjusted to reflect this in-
ternal size.

XTYPE WWO00 X-type specifications, where WW is the field width in nX.

REPET WWO00 Repeated specifications where WW = n of the forms nSw.d
or nTw, where S is either an E or F specification and T is an
lorA.

NRPAR — To denote the right parenthesis of a repeated group of specifi-
cations.

NLPAR WWO00 A left parenthesis of a repeated group, where WW = n of
n(...)

SLASH — The / specification, i.e., end of record.

LTPAR — The left parenthesis of an unrepeated group.

RTPAR — The right parenthesis of an unrepeated group.

T This data form assumes a character orientation of the data words and restricts the field
widths to two digits. Neither of these restrictions is necessary in practice.

be placed in a push down list with a last in, first out (LIFO) property.
Provision must be made in this routine for ensuring that the list is renewed
as each new FORMAT statement is used and that any list left over from an
unsatisfied FORMAT is not carried over to the next statement.

The input/output list is also interpretive but contains facilities for in
line object time computations. In particular, a system of tags and addresses
is used to form the basis of an interpretive process, so as to facilitate the
input and output of whole arrays and groups controlled by implied DO
loops, the computation of subscripted variable addresses, and the checking
of mode as well as to allow the possibility of outputting the result of an
expression contained in the output list.
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For example, the following items may be compiled:

Item in 1/0 list Tag Address
Simple integer variables and
subscripted integer variables 0 Address of variable

with constant subscripts

Simple real variables and
subscripted real variables 1 Address of variable
with constant subscripts

On the assumption that the interpreting routine can transfer control to in-
line instructions and that control can be returned to the interpreter by
branching to a point in the interpreter named RENTR, variables subscripted
by variables or expressions containing variables may be compiled by the
inclusion of inline instructions. For example, if a tag of 2 is taken by the
interpreter to mean that control is to be transferred to the instruction in the
next word and the instruction

B RENTR

is to transfer control back to the interpreter, the presence of subscripted
variables may be compiled as:

2 (tag)

Compiled instructions to compute
address of subscripted variable.

ST ++4 Store address in interpretive list.
ENA *+3 Reset list pointer.

ST LP

B RENTR

1 Address (tag) Location of absolute address
of element to be input or output
after the execution of the inline
instructions.

Entire array references may be entered into the object interpretive list by
the use of a special repeating tag. For example, a list containing an A that
has been dimensioned as A(3,4) would compile to

1 Address(A(1,1))
3 0011
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where the tag is assumed to be in the operation portion of the word and
the address (or constant) in the operand position, and where a tag of 3
indicates that the address in the previous word is to be used as a base and
incremented by unity 11 times so as to read in the remainder of the ele-
ments in the array. The number following the tag of 3 is one less than the
number of elements in the array since the first element has already been
referenced. The mode denoted by the first reference must, of course, be
maintained throughout this operation. In this type of /0 operation, the
order in which the elements are considered depends on the ordering of the
clements in the data table. In the ordering proposed in Chapter 4, the ele-
ments are referenced in such a manner that the first subscript changes most
rapidly and the last (or farthest right) most slowly.

Implied DO in 1/0 Lists

The same technique of leaving the interpretive mode may be utilized for
the coding of implied DO loops within the 1/0 lists. Such a group may be
recognized in a left to right scan by encountering an opening parenthesis.
However, the compiler must scan the right-hand side of the group to obtain
the variable name to be used as the implied DO index (control) variable.
As a simple case, consider the 1/0 list

(I, I=1,N,2)
which compiles to the instructions and list:
2
ENA 1 =1
ST |
NEXT ENA #+3 Reset LP.
ST LP
B RENTR Return to interpretive mode.
0 | List entry, integer variable I.
2 Execute inline instructions.
LDA | Increment I.
INA 2
ST |
SUB N Test for completion of loop.
BZ  NEXT
BN  NEXT
ENA *+43 Reset LP.
ST LP

B RENTR Return to interpretive mode.
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When the element in the group controlled by an implied DO is a subscripted
variable dependent on the control variable of the DO, the oscillation between
the inline coding and the interpretive mode can be extremely wasteful of
execution time unless one recognizes at compile time that such an oscillation
will occur and takes appropriate remedial action. For example, one can
argue that, in general, elements are placed in an implied DO group since
they are dependent on the control variable of the DO. Thus it may be antici-
pated that after one leaves the interpretive mode to initialize the DO con-
trol variable, inline instructions will need to be executed to compute the
address(es) of subscripted variable(s). Similarly, if the I/O list contains
more than one clement in the implied DO group, it is wasteful to return to
the interpretive mode to manipulate one variable address without checking
whether the next set of instructions to be executed is also inline. To return
from the inline mode to interpretive mode requires the execution of three
instructions; the reverse motion requires one word of interpretive storage
and the execution of innumerable instructions in the interpreter routine. Thus
if the number of transfers of control to and from the interpreter can be
minimized, the speed of execution may be enhanced. For example, consider
the compilation of the 1/0O list:

(A(D,B(+3,1),I=1,KL)
as shown in Table 6.2.

The difficulty of compiling with economization results from the fact that
the set of inline instructions must place the computed addresses into the
interpretive list and the addresses into which these results are to be placed
are not known when the inline coding is being generated; consequently, the
object time loader must backfill these addresses. Further, when a group con-
tains both variables dependent on the control index of the implied DO and
“free” variables, all inline instructions should be compiled together and
similarly all interpretive mode data kept in a single list.

With the ability to include inline instructions in an output list, it is not
inconceivable to allow expressions in the list so that output data may be
computed without storing the result in a storage location. In general, if
every item in an output list is considered to be an expression (that is, an
executable), then without appropriate tests in the | /O generator, the right-
hand side scanner of the arithmetic statements may be utilized to generate
both required inline instructions and addresses. However, when any single
arithmetic operation is to be executed, the arithmetic generator will normally
leave the result of the computation in the accumulator. Thus if control is
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TABLE 6.2
Compile without economization Compile with economization
2 2
ENA 1 ENA 1
ST I ST I
NEXT ENA *+3 NEXT ... Compute address
ST Lp - of A(I)
B RENTR P
2 . Compute address
Compute address ... of B(143,1)
of A(1) ...
.. ENA *+3
ENA 43 ST LP
ST LP B RENTR
B RENTR 1 A(l)
1 Al 1 B(1+3,1)
2 2
Compute address LDA | Increment |
of B(14+3,1) ADD L
ENA *-+3
ST LP
B RENTR
1 B(1+3,1)
LDA | Increment |
ADD L

transferred back to the interpreter, this result may be lost. A special set of
tags, such as 8 and 9, would indicate that the next word contained not the
address of a variable but the actual value to be output. Only two tags are
needed in this instance since no other inline operations can be performed.
Thus the inline instructions to compute the value of an expression would
place this result in the interpretive list behind the appropriate tag. Such a
facility during input is meaningless, since an input list is a list of addresses
in which data are to be stored and may be considered as a set of left-hand
sides or loadables.

In the interpretive mode, one more code or tag is essential. Tag 2 transfers
control from the interpretive mode to inline coding with the expectation that
control will be returned; but a code is needed to signify the end of the 1/0
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list and thereby to force an I/0 action such as outputting the record created
by a WRITE statement and reinitializing the interpreter and other associated
routines in preparation for the next | /O statement execution.

IOPAK

The 1/0 list interpreter is merely a portion of the overall supervisor which
must control all input/output by manipulating the pointers LP, FP and SP,
combining the actions required by the | /O list and the FORMAT lists. The
general aspects of this supervisor, which we shall name IOPAK, are shown
in Fig. 6.1.

The diagram in Fig. 6.1 is based on the assumption that an 1/O statement
is compiled as:

ENA *+42
B IOPAK
DEVICE Code for device, i.e., unit number

FORMAT Address of first specification in FORMAT

1/0 interpretive list

Since some devices for input/output are bidirectional, a special tag is in-
cluded in the device code to provide IOPAK with the information on the
direction of the transference of data. The instruction to “Execute the 1/0
routine” appears at several points in the flow chart. Since the device code
contains a tag specifying the direction of the action to be taken, some of
these execution operations are bypassed. For example, if the operation is
one of output, the execution of the 1/O routine within the initialization
phase is bypassed in favor of an output operation either when RTPAR or
SLASH is reached, or when the output list of variables is exhausted in one
of the TYPE routines. Similarly, the 1/0O routines in the TYPE routines are
not executed on input, the input of the data having taken place during the
initialization phase.

FORMAT in the above coding is the address of the referenced FORMAT
statement, which will be used as the initial value of the FORMAT pointer, FP.
The content of the accumulator on entry to IOPAK is the address of the first
item in the 1/0 list which is, in fact, DEVICE.

In Fig. 6.1, several other routines are referenced. The 1/0 list interpreter
has already been discussed. The 1/O routine is possibly a single instruction
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into which the pertinent bits can be placed so as to execute the input to an
internal buffer or to transfer the contents of the buffer to an output device.
For example, in the IBM 1620, there are basically only two instructions
pertinent to input and output: 37 XXXXX OZZOO for input, and 39 XXXXX
OOZZO for output, where XXXXX is the address of the internal buffer area
and ZZ is a code to reference a particular device. For example, ZZ=01 refers

IOPAK
Pick address out}
of Accumulator
Clear out push
down list of NRPAR
Place Content of FP Increment SP
in RTPAR routine by Ww
Clear Buffer area
to blanks v v
v . SPEC=07 Increment FP
FORMAT — FP v

DEVICE

Increment Fp

Set up 1/0 routine
SP=1

1 See RTPAR.

Execute 1/0 routine

Set LP to 1st
item in 1/0O List

Branch to routine
defined at FP

FIGURE 6.1
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RTPAR

Execute /0O Execute 1/0 Place Contents of FP
Routine Routine apd
Value WW in push down
list of NRPAR
Set FP to point Increment FP
set in last LTPAR Increment FP
NO

YES NRPAR

@_»_ Reset I/O
Routine

Reduce last
WW by. 1

Pop up list
of FP and WW

Y

Increment FP

Set FP to FP
provided by
NLPAR at top
of list

+ If this point is reached, then

YES
the FORMAT statement contains no
field descriptor which can be

ERROR matched with the 1/0 list ele-
ment(s). For example, it would
catch the illegal combination:’

WRITE (61,100) X
100 FORMAT (14Hb OVERbANDbOVER)

FIGURE 6.1 (continued)
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SPEC=11

Execute
" 1/0 Routine

Execute Interpreter
routine until the address
of a var. is available.

With information
at FP and Address from
interpreter, execute
transfer * routine

Increment
FP and LP

WW I

Y

Increment FP

Y

 See RTPAR.

* Note that direction of trans-
fer will depend on type of 1/0
statement, i.e., input or output.

NO

FIGURE 6.1 (continued)

Transfer *
character at FP

y

Increment FP
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Decrement |
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to the typewriter in both input and output, ZZ=02 refers to a paper tape
punch, ZZ=03 to a paper tape reader, ZZ=04 to the card punch, and
77—=05 to the card reader. Thus if a dummy instruction of the form 3Y
XXXXX OZZOO is placed in IOPAK, the initialization portion of IOPAK may
set up the instruction appropriate to the direction of transfer and the par-
ticular device. When a single internal buffer is used in the system, the
address XXXXX is also fixed. However, if alternating buffers are used so that
one may be filled while the other is being emptied, this address must also
be filled at object time by IOPAK.

Within the E, F, 1 and A TYPE routines there is a reference to a transfer
routine which is merely a routine that transfers data to or from the internal
buffer, from or to the internal data areas, with conversion from or to BCD
mode, if necessary.

When the 1/O statement references a variable FORMAT statement that
was read in at object time, reference must be made to the FORMAT transla-
tion routine before the IOPAK routine is entered, this FORMAT routine
placing the translation into the area where the source form was stored.
Thus to prevent the retranslation of this data by a second reference to the
same variable FORMAT, a special tag should prefix the translation. Since
some compilers allow the manipulation of the data in the variable FORMAT
arrays and there is no restriction regarding the timing of this manipulation
(that is, manipulation may take place after the use of that FORMAT specifi-
cation), then the source form of the specification must be inviolate, the
translation must be stored in a separate area, and the statement retranslated
at each reference. A variable FORMAT input/output statement may be com-
piled as follows: '

WRITE(5,A) ...
ENA Address(A(1,1)) Address of array to ACC
B VARFM Branch to variable FORMAT
translation routine
ENA *+2
B IOPAK
DEVICE
FORMAT
1/0 list
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Summary

The complications that arise at object time in executing the interacting
I/O statements and their referenced FORMAT statements are similar to those
connected with compiling the interacting statements COMMON, DIMENSION
and EQUIVALENCE (see Chapter 4). However, the compilation of definition
statements at compile time has a unique solution, whereas the object time
execution of an input/output statement interacting with a FORMAT state-
ment may lead to invalid combinations that must be routed out at object
time. For example, it is difficult, without actually executing the statement
of output, to ensure that a real variable is output under control of the appro-
priate specification. Since the specifications do not define the action to be
taken in this type of situation, most compiler writers (and hence object code
writers) make their own decision as to the appropriate action. In an educa-
tional system, this situation may be considered a fatal error, whereas in a
commercial environment it may be intentionally decided that the appropriate
mode conversion is to be executed when this anomaly is encountered. Thus
a piece of data stated on the input medium as an integer may be stored as a
real variable value without recourse to storing it as an integer and then in-
cluding a special statement to change mode.

Similarly, the specification of a too narrow field width on output has no
definite solution. One system will refuse to ouput the data, giving an object
time error message, while another will output, without comment, only those
low order characters that fit the specification.

Basic FORTRAN allows the writing of 1/O statements without reference
to a FORMAT statement, such a facility being a boon to lazy programmers
and to computer science instructors who wish to overcome the complications
of the FORMAT specification and acquaint their students with the core of
the problem of algorithms as soon as possible. In this situation, the com-
piler must invent a FORMAT specification based on a standard set of specifica-
tions (i.e., E20.8, 120) from the I1/0 list storing this in the same manner
as a written FORMAT statement or by adding special sections onto the 1/0
interpreter routine. In a completely free FORMAT system where the input
data are not in any fixed FORMAT but merely arranged on the input medium
with delimiters, such as blanks or commas, between each piece of data, the
compiler cannot produce a FORMAT specification; however, it is feasible
that the object time routines perform a double scan of each field, the first
pass determining the field width which would then be provided to a FORMAT
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specification. The second scan would then return to the beginning of the
field with this information and extract the data in the normal fashion.

The inclusion of expressions as valid elements in an output statement can
lead to a considerable saving in execution time in a program outputting a
great amount of information that is not required at later stages or that can
be computed without logical decision instructions. In fact, with continuation
cards it is quite possible for a program to exist that contains only a single
instruction, except maybe STOP and END. For example, a complete table of
trigonometric function values may be produced by the statement

PRINT, (FLOAT (1) ,SIN(FLOAT (1) ) ,COS(FLOAT(1) ) ,I= 1,180)

by making use of a free FORMAT output statement and executables.

Problem

6.1 Redesign the flow chart in Fig. 6.1 to include free FORMAT input. As the
key to this requirement in the compiled instructions, assume that free FORMAT
is required when the address in the 1/O list normally referring to the FORMAT
statement is zero.
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Arithmetic and logical expressions to be scanned for translation or

analysis are, in general, in a form that is not suitable for scanning by
a computer and translation to a set of machine language instructions. When
one examines a statement by eye, it is comparatively easy to recognize
groups or phrases and, for example, to locate the innermost parentheses.
However, for the computer to locate this set of parentheses within a scan-
ning process, the complete statement must be scanned more than once
and possibly many times. The notation employed by a Polish logician, J.
Lukasiewicz (and generally known as Polish String notation since most
people can neither pronounce nor remember the name) is a means of
representing arithmetic or logical expressions that is unambiguous, does
not need parentheses to enforce the hierarchy of operations, and may be
broken down to a set of operations and operands in a single scan. There
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are, in fact, several forms of Polish String notation. The particular form to
be described in this chapter is known as “Reverse Polish.” In this notation,
each operator is preceded by its two operands. Thus the string ab+ is the
Polish string form of the usual arithmetic expression a+b, it being assumed
in this particular instance that each variable name is only one character in
length.

Once an expression has been reduced to Reverse Polish, its translation
back to the usual algebraic form is accomplished by scanning the string
from left to right until the first operator is located. This is then placed be-
tween the two preceding operands, all three items becoming a parenthetical
group or, in other words, a term in the string. For example, the string

xabcxd/+ =
would be translated in the following steps:

1. In a left to right scan, the first operator is *, which is placed between
the two preceding operands:

bex — (b*c)
The string becomes
xa(bxc)d/+=

and the term (b*c) is regarded as an operand from this point on.

2. The scan is continued for the next operator to the right of the asterisk,
which is /. This is placed between the term (b*c) and the operand d:

(bxc)d/ — ((b*c)/d)

3. The scan is continued further and the next operator is +. This is
placed between the two preceding operands, and the string is transformed to

x(a+((b*c)/d))=

4. Finally, the last operator in the string is =; the completely trans-
formed statement is

(x=(a+((bxc)/d)))

or
x=a+—
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The Conversion from Algebraic to Polish Notation

Performing the translation from normal algebraic notation to Reverse
Polish is not quite as simple as the above procedure (which could be pro-
grammed easily), since normal notations are not explicit. For example, an
order of execution dependent on the hierarchy of operators may be recog-
nized in any algebraic statement, whereas Reverse Polish is independent of
hierarchy. For example, the scalar expression

a+ b(c—d)e —f
may be executed several ways, but with some implicit rules:
1. Parenthetical phrases are to be evaluated primarily.

2. Multiplication or division operators are to be executed before addi-
tion or subtraction.

3. When several operators of the same hierarchical level exist simul-
taneously in a statement, they are to be executed from left to right.

To overcome the handicaps of needing to refer to a set of rules of
execution order, an expression that is to be translated should be fully
parenthesized. That is, it should be written in a form that is a legal syntax
of the rules:

<operator> := +|—|*|/|+

<replacement sign> := =

<variable> := alb|c|dle|f| . .. |x|y|z

<constant> :={<digit>}.{ <digit>}|{ <digit>}

<digit> := 1|2|3|4/5/6/7|8/9|0

<expression> := <variable>|<constant> |
(<expression> <operator> < expression>) |
(<sign> <expression>)

<sign> 1= +|—

<statement> .= <variable> <replacement sign> < expression>

If these rules are used, no pair of parentheses contains more than one
operator at the same parenthetical level, where the parenthetical level of an
operator is defined as the number of parentheses between it and the outside
of the statement. For example, the parenthetical level of each operator is
written beneath each operator in the following statement:

(x=C(a+ ((b*c)/d)))
1 2 4 3
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Once an expression has been fully parenthesized, it may be translated to
Reverse Polish by working from the innermost parenthetical phrase toward
the outside of the statement. Taking the above example, the innermost
parenthetical group is

(b*c)
which becomes
bc*

Let us use { ...} to distinguish that portion of the expression which has
been translated and may now be regarded as a single term; then the above
statement becomes:

(x=(a+ ({bc*}/d)))
1 2 3

The symbol / appears at the next level:
(x=a+ {bexd/}))
1 2

Continuing to level 2:
( x = {abc*d/+})
1

and, subsequently, at the lowest level:
{xabcxd/+=}

Since no other untranslated parenthetical groups remain, the { ... } may be
dropped. Translation from an arithmetic statement to Reverse Polish does
not necessarily result in a unique string. The result depends on the paren-
thesizing. Automatic parenthesizing routines that recognize the hierarchy of
a left-most operator in a string of equal hierarchical level operators will
produce the same string consistently, whereas manual parenthesizing which
takes advantage of the associativeness of + and * can produce differing
Reverse Polish strings. For example, the algebraic string

a(b—c)d
may be parenthesized to two manners:
((a*(b—c))*d) and (ax((b-c)*d))

which translate to
abc—*d* and abc—d**
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respectively. A more startling result is found when a normal string con-
tains many operators of the same level:

a+b+c+d

((ta+b)+c)+d) (a+ (b+ (c+d)))
ab+c+d+ abcd+ + +

Although a pair of parentheses may not contain more than one operator at
the same level as the parentheses themselves (that is, no more than one un-
parenthesized operator), there may be as many as two operators at the next
level, three at the next, and so on. For example, the statement

at+brxct+d+exf
may be wholly parenthesized in the form

((@a+(b*c)) + (d+ (exf)))
23 1 2 3

Thus in translation to Reverse Polish, there are two possible starting points
for the conversion process: the two operators at level 3. In fact, the order
of conversion is irrelevant, since all orders of hierarchy are dissipated by
the inclusion of parentheses. However, no operator can be involved in a
conversion process until all other operators of higher parenthesis level have
been eliminated. In a perfect situation, it would be advisable to convert all
equal level operators with their operands to Reverse Polish simultaneously.
For example,

(a*b—(c+d)/e) *f
(((@a*b) = ((c+d)/e)) *f)
3 2 4 3 1
(((@*b) — ({cd+)} /e)) * 1)
3 2 3 2
(({abx} S {cd+e/}) ’l*f)
({ab*cd+e/—} * f)
1
{ab*cd+e/—fx)}
The unary operators, and, in particular, the unary minus, must hold a
special place in Reverse Polish notation since only one operand is asso-

ciated with this operator. Thus, whereas the production rule of converting
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from Reverse Polish binary operators to normal notation may be described
as

< operand> <operand> <binary operator> —>
(< operand> <binary operator><operand>)

the production rule to be used in connection with a unary operator is
<operand> <unary operator> — (<unary operator> <operand>)

Another drawback to the use of unary operators (which, incidentally, are
merely a shorthand method of denoting an operation involving the zero
operand) is the use of the same symbolism for unary plus and minus as
binary plus and minus, respectively. A unary operator may be recognized
because:

(a) It is the first character in an algebraic string, for example,

—a—»b

(b) TItis the first character following an opening parenthesis, for example,
a* (—b)

In the following discussion, the unary plus will be ignored, and a unary
minus will be represented by the special symbol ~. Thus in the translation,
(—a) becomes {a~}. According to the rules of total parenthesizing, a unary
minus must be surrounded by parentheses; thus ((—a) * (—b)) becomes
({a~}* {b~}) and, finally, a~b~*.

Problems

7.1 Convert the following Reverse Polish strings to normal algebraic strings:

(a) a~cd*+bc—/zk~1+
(b) xcdte/abx+=
(¢) ab+cdx/egf~+*—~

7.2 Convert the following algebraic statements to Reverse Polish notation:

(a) —a+bxcxd/ef
b)) (a—b—c)/d/e
(¢) a(b/c+d/e) = f(—g—h)
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Expressions Including Unary Operators

Certain combinations of operators and the unary minus may be manipu-
lated so that the number of unary minus operators are minimized in an
expression. In particular, transformations (or productions) using z and p
terms (listed below) may be used to manipulate expressions.

Original expression Expanded expression

1. 7+ (—p) T p
wp~ + Tp—

2. 7— (—p) T+ p
mp~ — wp+

3. a* (—p) — (7 * p)
wp~ * Tp*~

4. 7/ (—p) —(z/ p)
ap~ / wp/~

5. —mT—p ‘—(71' + p)
Tp — wp+~

6. —m+p or —(z—p) p—m
a~p+ or Tp—" pm—

7. —m*p — (7 * p)
T p* Tp*~

8. —a/p ~(x/ p)
7~p/ ap /[~

and of course:
9. (=(=m)) ™
T~ T

Since both 7 and p represent terms in the productions listed, identities 5
to 8 can only be used when the unary minus is the operator farthest to the
right in a string of operators. Hence when any expansion of a string is to
be manipulated so as to remove unary minus operations, the first process
must be to move the imbedded unary minus operators to the right-most
position in an operator string. For example, consider

((=b)*(—a))

that is, b~a~+* in Reverse Polish notation. From production 3, the unary
minus in the pair of operators farthest to the right may be interchanged
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with the multiplication operator; that is, the string becomes b~a*~. If braces
are added for clarity, it may be seen that the first four characters in the
string are similar to the starting formula in step 7:

{b~a*}~
and thus may be manipulated to the string

{ba*~}~

When the parentheses are removed, the expression is similar to the starting
formula of production 9, where the two unary minus operations cancel.
Thus the resultant string is ba*, or in normal form b*a.

Consider the expression
—d—a+bx*(—c)
that is, in Reverse Polish,
d~a—bc~*+
In the following manipulation, the underscored operators have been either
manipulated or generated in a production.

From production 3:

d~a—bc*~+
From production 1:

d~a—bc*:
Let us now bracket the groups for clarity:

{d~a—}{bc*—}

From production 5:
{da+}~{bc*}—
Again production 5:
{da+bc*}+~
At this point no more unary minus operators remain inside, and the string
may be converted back to the usual form:
—(d+a+bxc)

In connection with the involution operator, two further productions are
necessary:

10. axb(—c) a/ (btc)
abc~1+* abc?/

11. a/ (b (—c¢)) a*bfc
abc~1/ abcl*
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Problem

7.3 Reduce or eliminate the unary minus operators in the following scalar
algebra strings:

a
(a) — [:F+ (—0)]
(b) (—ab +c)—@—o
(¢) —(a—(c*(=b/(d%))))

Parenthesizing Expressions

The translation from normal algebraic statements to Reverse Polish
notation depends on the existence of a fully parenthesized statement. Since
this is not the form in which statements are generally presented, let us con-
sider an algorithm for the parenthesizing of unparenthesized or partially
parenthesized statements. Basically, the parenthesizing of an expression de-
fines the order of execution of each operator without regard for the hierarchy
of these operators. However, the technique of parenthesizing must depend
on this hierarchy. If each expression is delimited by two pseudo-operators,
I~ and |, which define the beginning and end of the statement, respectively,
then the hierarchy levels may be tabulated as follows:

= -

U= % 4
~
S R

The parenthesizing process consists of the following steps:
1. Add the beginning and end delimiters to the statement.

2. Place the operator hierarchy values under each operator. Note, we
shall use the term V(op) for the hierarchical value of operator i, where i

is the position number of the operator from the left-hand end of the state-
ment. That is, the beginning operator |- always has a position number 1.

3. Starting from the left-hand end of the statement, (op; = |-), set
the counter at n = 1.
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4. Scan along the statement to the right until the hierarchical value of
the operator n is found to be greater than or equal to operator n+1, that is,

V(op ) =V(op )
n n+1
5. Place a closing parenthesis to the left of op
n-+

6. From op move left until op is found, so that
n i

V(op) = V(op)
7. Place an opening parenthesis to the right of op .
8. Remove V(op ).

9. If op is the end delimiter and op is the beginning operator,
n+1 n—1

then the parenthesizing is complete. Otherwise, set the pointer to op
n—1

(that is, decrease the value of the pointer by 1). If V(op ) =V(op ),
n n+1

go to step 5; otherwise, go to step 4.

For example, consider the delimited string:
step 1 -x=a—b—c—d-
step 2 V(op) O 1 2 2 2 0
step 3 __——————T
step 5: insert )

step 6: move left

step 7: insert (

step 8: remove V(ops)

step 9: ops is not the end delimiter.
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172

~x=(a—b) —c—d-
0 1 2 ‘2 0
A !

A
step 4

step 9:

ops is not the end
delimiter.

step 5: insert )

step 6: move left

step 7: insert (
step 8: remove V(opy)

~x=({a—b) —¢) —d-
0 1 2‘“}0
!

TStep 9: op is the end,
but not all V(op) are
null.

step 4

step 5: insert )

step 6: move left

step 7: insert (
step 8: remove V(ops)

Fx=(((a—b) —c)—d) -
0 1 1}0

steps 3 and 4 Step 9: op is the end,
N and all V(op) are
null. Hence paren-
thesizing is complete.

step 6: move left Step 5: insert )

step 7: insert (
step 8: remove V(ops)
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The resulting string is:
Fx=((a=b) —c) —d)) -]
In the following example, the individual steps are not shown, but an arrow
indicates the operator chosen in step 4.
—x=a*b/c+*d-

—x=ax*xb/c*d-]
0 1 3 3 3 0
1

-x=1(a*b)/c*d-
0 1 3 3 0
1

—x=((a*b) /c) *d-
0 1 3 0

T
x=(((a*xb) /c)=*d) -
0 1 0

0
(x=(((a*b) /c)*d) -]
0 0
4 Complete

If a statement is already partially parenthesized, the above procedure must
be modified slightly. In particular, if a left parenthesis is encountered during
a left to right scan, the string following that operator up to the closing right
parenthesis may be regarded as an entirely separate statement. Once that
inner statement has been parenthesized, the outer statement may be paren-
thesized. For example, after the inner groups of the string:

x=(a+b+c¢c)/(c+d=*e)-
0 1 2 2 3 2 3 0

have been parenthesized, the statement is of the form
Fx=(((a+b)+¢c))/((c+ (d*e)))-l
0 1 3 0
After the next two steps, the parenthesizing of the multiplication and re-
placement operators, respectively, the statement takes the form
F&x=(((a+b)+c))/((c+(d*e))))) -]

This technique adds an overabundance of parentheses since each group
within a parenthesis pair is reparenthesized. The technique may be improved
by using the opening and closing parentheses to alter the hierarchical order
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or level of operators. For example, one may add 10 to all V(op)s when a
left parenthesis is encountered, and subtract 10 when a right parenthesis is
found. At the same time, parentheses are dropped (or omitted) from the
string. When, in the above example, hierarchy values are added as affected
by parentheses and the parentheses are dropped, the expression becomes

-x=a+b+c/c+d*e-
0 1 12 12 3 12 13 O

This scheme eliminates the necessity to make an exception to the algorithm
for the recognition of parentheses and also provides two other features.

1. Unpaired parentheses exist in the statement when the value of the
level of the end delimiter is not zero.

2. Extra unneeded parentheses are eliminated. For example, if in the
statement:
x=(a) +b/ (c)

the level values are added and the parentheses dropped,

x=a+b/c-
0 1 2 3 0

parenthesizing gives:

Fx=(a+(b/c)))-

Problem

7.4 Given the following operator hiararchy table (from lowest level to
highest),
V (or)

A (and)

<> <> =
~ (not)

+ — (both binary)
* /

T

+ — (both unary)

functions
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parenthesize the following expressions:
(a) y>3Vb
(b) x12—jx*y|>y/x
(c) aAbVc Ad=*=~(aVb)
(d) sin(x)12+4+cos(x)12=1
(e) sinh (x) = (exp (x) —exp (—x)) /2

A parenthesizing process of particular interest is that utilized in the
FORTRANSIT system of the IBM 650. In this process, the hierarchical
table is used as a basis for the insertion of parentheses around each operator.
If an operator and its operands are to be enclosed properly in parentheses,
the highest level operator must be imbedded most deeply in a nested set of
parentheses and the lowest operator enclosed by the fewest parentheses.
Thus the FORTRANSIT parenthesizing routine places opposite-facing
parentheses about each operator, the number of parentheses being in the
inverse ratio to the hierarchial level. Consider the set of expressions that
may be formulated from the restricted set of operators with the following
hierarchical levels:

(binary) + — level 1, inverse level 3,
*/ 2, 2,
T 3, 1.
Consider the particular expression
a*b+c

If a set of parentheses is placed around each operator so that the number of
parentheses is equal to the number of the inverse level, the expression
becomes

a))*((b))+((c

Obviously, this expression is invalid since the number of parentheses that
closes a group exceed the number that opens a group at at least one point
in the string. To overcome this, the opening and closing delimiters must be
added with (in this case) a hierarchical level of 0 and an inverse level value
of 4. Further, since delimiters are one sided, parentheses need only be
added between the delimiter and the expression. The above expression then
becomes

(((@)N*(Cb)))+(((c))))
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At this point, an overabundance of parentheses has been created, making i
difficult to determine whether or not the parenthesizing is complete or suffi
cient. If the matching parentheses surrounding each operand are removed
the expression is reduced to

(Ca*b) +c¢)

When operators of the same hierarchical level occur in sequence, this simpli-
fied system breaks down. For example,

a—b—c
is parenthesized to

(((Ca)))—=(Cb)))—=((Cc))))

and reduces to
(a—b—rc)

which is not satisfactory. Thus when the operator being surrounded is o
the same level as that parenthesized immediately beforehand, the inverse
levels in the whole table must be increased by 1, and an extra parenthesis
added to the opening delimiter. Thus the above expression is parenthesizec
to the string

(C((Ca))—=C(5))))—((c))))

which reduces to
((a=b)—c)
Consider the expression
a+b+ctd—e
which parenthesizes to

(CCCCa))) + (b)) + (((Ce))1((d)))) — (((Ce)))))

Canceling the matching parentheses around each variable reduces the ex-
pression to

((a+b)+ ((ctd)) —e)

This reduced expression (which still has two extra parentheses surrounding
the involution operator) still has two operators at the same level, namely
an add and a subtract. This is because the intervening involution operator
masked the fact that, in the order of execution, the add and subtract would
be in sequence. To overcome this object, the rule regarding the increase in
the hierarchical level (inverse) should be altered to read that the inverse

176



DIRECT CONVERSION

hierarchical level should be increased after each subsequent usage of the
same operator level. That is, the inverse hierarchical level should be in-
creased at the second and all subsequent occurrences of an operator from a
single hierarchical level. With this rule the above expression would paren-
thesize to the following string:

(CCCCCa))) + (b)) + (((Ce)) 1 ((d))))) — (((((e))))))

which would reduce to

((Ca+b)+((crd))) —e)

and further to
((Ca+b)+ (ctd)) —e)

This particular technique is an interesting approach to the problem of
parenthesizing, but as will be shown later is a redundant operation in the
arithmetic generator. However, in those specialized systems (such as
FORMAC) where parenthesizing is one of the primitive operations, it may
be worthwhile. ‘

Problems

7.5 Extend the above algorithm to include the occurrence of parentheses
in the original expression.

7.6 Write a program to read in a partially parenthesized expression, to paren-
thesize the expression, and to output the result. The program may include the
replacement sign, unary operators and the operators +, —, *, / and 1; each
variable consists of a single letter, and no constants are included. If the
FORTRANSIT method is used, discard any redundant parenthesis pairs.

Direct Conversion

After a statement is parenthesized, the next stage of translation is that
described previously for converting a fully parenthesized expression to
Reverse Polish notation. Let us now consider the techniques of combining
these two processes. The process of converting from a parenthesized group
to Reverse Polish notation may be described by the production

(<operand> <operator> <operand>)—
{<operand> <operand> <operator>}.

Thus if one knows where the parentheses are to be added in a string, that
group may be immediately converted to Reverse Polish notation. However,
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the FORTRANSIT parenthesizing routine is not satisfactory for this pur
pose, since the parentheses are added before the groups are defined.

Using the parenthesizing routine discussed on page 170, we may proceec
to step 4, locating the highest level operator before altering the algorithm
It may be shown that in the first pass of the scan, the chosen operator i
adjacent to its operands which are simple variables. Thus, these three item
may be converted to Reverse Polish notation immediately. In fact, thi
operator and right-hand operand merely change places, and the three item
form a new operand. If, for the purposes of demonstration, the operato
and operands currently being converted to Reverse Polish notation are en
closed by { and }, then, unless one or other of the operands is already en
closed, the process of conversion may be described as follows:

1. Choose the operator and operands to be converted (by the same rule
used for the parenthesizing algorithm) and surround each operand and th
operator by { and }.

2. Within the string, exchange the positions of the operator and its right
hand operand, carrying the enclosing braces with each item.

3. Scan the string and remove any adjacent braces. After this operation
only two braces will remain in the string. These braces will surround the
converted string which is considered henceforward as an operand.

4. Repeat the above steps until the string is totally enclosed in braces
at which point the string has been converted.

Consider the string

x=a+b/c-
0 1 2 3 0
1

where the arrow denotes the first chosen operator by the rules of the paren
thesizing algorithm. Enclosing the operator and its operands in braces anc
exchanging the positions of the operator and right-hand operand, we obtain

Fx=a+ {b} {c} {/}

0 1 2 0
Cancel the adjacent braces

—x=a+ {bc/} -

0 1 2 0

The next operator to be included in the grouping is the addition sign whicl
has a left-hand operand of a and a right hand operand bc/. When brace:
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are added to the string, the right-hand operand is not affected since it is
already enclosed. At this stage the string is of the form

x = {a} {+} {be/} -
0 1 0

Exchanging the positions of the right-hand operand and the operator gives:
—x = {a} {bc/} {+} -
0 1 0

Removing the adjacent braces:

- x = {abc/+} -
0 1 0

The last three steps are

- {x} {=} {abe/+} -
0 0
I {x} {abc/+} {=} -]
0 0
- {xabc/+=)} -
0 0

An input string containing embedded parentheses may be handled in the
same manner provided the hierarchical levels are adjusted within the paren-
thetical groups and the parentheses dropped before the conversion is
attempted. For example, consider the input string

x=C(a+b)/(c1d)
Using a bias of 10 within the parenthetical groups, and dropping the paren-
theses, we obtain the input string:

—x=a+b/ctd-
0 1 12 3 14 0
i)

chosen
operator

The steps in the conversion process are
—x=a+ b/ {cdt} -
o 1 12 3 0
—x = {ab+} / {cdl} -
0 1 3 0
- x = {ab+cd/1} -
0 1 0
- {xab+cd?/=} -
0 0
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Summary

Polish string notation is important not only because it is a system tha
transcends the need for a hierarchy of operators and hence does not neec
parentheses, but also because the order of concatenation of variables anc
operators defines an order of execution of the expression. According to the
rules of parenthesizing, the first operator and operands to be converted tc
Reverse Polish notation from an algebraic normal notation string are those
of the first innermost parenthetical group, which is also the first group tc
be computed during execution.

Hence, in the same manner that the algorithm to convert from norma.
notation to a fully parenthesized form and the algorithm to convert from
the parenthesized form to Polish notation were amalgamated, a single algo-
rithm can be created to convert the normal algebraic mode to a set of com-
puter instructions, once the relation between Reverse Polish notation and
computer instructions is established. This is the topic of the next chapter.
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The previous chapter discussed the techniques and algorithms for the

generation of Reverse Polish strings from more normal algebraic state-
ments. In this chapter this concept will be extended to produce a set of
machine instructions. This discussion will be based on those instructions
already defined for an imaginary machine, together with new instructions
which will be added to the repertoire as needed. We shall not discriminate
between the various modes of execution (that is, real, integer, etc.) since
these have no part in the general algorithm and are either machine or lan-
guage dependent. For the moment, let us review the arithmetic instructions
and their semantics:
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Instruction Meaning
LDA a a— ACC
ADD a ACC + a— ACC
SUB a ACC — a— ACC
MUL a ACC * a— ACC
DIV a ACC / a— ACC
ST a ACC—a

The conversion from normal algebraic notation to Reverse Polish nota-
tion is unhampered by the need to convert the symbolism of the string.
That is, the operands and operators have the same meaning in a normal
algebraic string as in a Reverse Polish string. However, when one converts
to machine instructions, the symbolism is different (for example, + becomes
the mnemonic ADD), and more than a single string is created. In general,
the conversion of a single set of operands and operator in the Reverse
Polish notation to a set of machine instructions may be represented by the
production

<operand,> <operand,> <operator> — LDA <operand,>
<op> <operands>
ST <temp>

where the <op> in the resultant set of strings is dependent on the
<operator> in the source string. In particular, the following correspond-
ences will be in effect:

Input String Output String

Operator Operator
+ ADD
— SUB
* MUL
/ DIV

In the particular case of the replacement sign, the production strings are

<operand,> <operands> = — LDA <operand,>
ST <operand;>

In these productions, <temp> refers to an infinite set of memory addresses
which are free of other uses. It is assumed that once an element has been
used in this set it is no longer available for use; that is, it is no longer free.
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From Polish to Machine Code

Let us review the rules for converting Reverse Polish notation to normal
form:

1. Scan from left to right to locate the first operator.
2. The two preceding operands are then the operands of that operator.

3. Exchange the positions of the operand immediately to the left of the
operator and the operator, at the same time enclosing the operands and the
operator in parentheses. For all further processing this parenthesized group
is regarded as an operand or, when enclosed in further parentheses, as part
of an operand.

4. If the last parentheses added comprise a pair that encompasses the
whole string, then the process is complete. If not, then continue to scan to
the right until another operator is located, and return to step 2.

This same process can be used to generate a set of machine instructions
if step 3 is changed to the following:

3. Use the production (on page 182) to generate instructions appropriate
to the operands and operator. Replace the three elements of the input string
by the name of the temporary storage location.

Using this new set of rules, let us consider the input string
xabc/*d+=

At the first scan, the located operator is / which has the operands b and c.
Thus using the production rule appropriate to /, we shall generate the
instructions

LDA b
DIV ¢
ST T1

where 7, is a free element from the set <temp>. The string then is reduced
to xar;*d+=. Continuing to scan to the right, the next operator is * and
its operands are a and 7;; hence the generated instructions are

LDA a
MUL ~
ST T2
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and the string is reduced to x7»d+=. Further applications of the rules of
generation will producé the instructions:

LDA 1o
ADD d
ST T3
LDA 3
ST X

It is obvious that in the total set of generated instructions there are, in
certain instances, back to back store and load instructions that reference
the same operand. That is, a result is stored in a temporary location by the
use of one production and is brought back immediately by the next pro-
duction. Further, in those cases where the operator is commutative, a
temporary storage location can be saved by reversing the positions of the
operands. However, although these deficiencies may be recognized at this
time, we shall postpone detailed consideration of them until a later section.

From Algebraic Notation to Machine Code

Machine instructions may be generated from the normal algebraic string
if the algorithm above is preceded by the instructions describing conversion
from normal form through parenthesized form to Reverse Polish notation.
This technique, which culminates the considerations of the previous chapter
together with the above algorithm, may be described as follows:

1. Assign hierarchy levels to each operator taking into account the step
increases and decreases when a parenthesis is encountered.

2. Starting from the left-hand end of the statement, locate the operator
such that V(op ) = V(op ).
n n-+1

3. The operands immediately to the left and right of this operator are
the operands pertinent to the chosen operator.

4. (Note that at this point in the algorithm to convert to Reverse Polish
notation we would have interchanged the right-hand operand and the opera-
or and enclosed the two operands and the operator in braces. In this
algorithm we merely rewrite the productions.) Using the following produc-
tions, generate the appropriate instructions:
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<operand,> <operator> <operand>> — LDA <operand,>
<op> <operands>
ST <temp>

.except where the operator is the replacement sign in which case the produc-
tion rule is

<operand,> = <operand,> —> LDA <operands>
ST <operand;>

5. Replace the operator and its operands by the name of the temporary
location in which the result is being stored.

6. If the operator that forced the compilation of the instructions perti-
nent to op is the end of the statement ( |- ), return to step 2, unless the
n

statement is now null, which indicates that the compilation (or generation)
is complete.

7. If the forcing operator is not the end of the statement, check op

n—1
for the possibility that the forcing operator will also force the compilation of
this operator. That is, set the pointer to the operator previous to the one
just compiled and return to step 2 without returning the pointer to the left-
hand end of the statement.

Let us consider an input string in normal form which is to be com-
piled by this set of instructions. In the following discussion, the symbols

t 0
C and H

are used to indicate the operators that are currently being investigated and
that which is in sand as a possible forcing operator. Given

l-x=a*b/c+d-
0 1 3 3 2 0

the first scan will place the current operator pointer under the * symbol
while that in hand will be the division operator. That is,

x=a*b/c+d-

T o1
C H
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At this point, the compilation of the multiply operator and its operands is
forced, thus producing the instructions

LDA a
MUL b
ST T1

and the string is reduced to

I—X:1'1/C+d—l
t T
C H

which shows that the in hand pointer remains in position and the current
operator pointer moves to the left. At this point, the hierarchial level of the
in hand operator does not force the compilation relevant to the current
operator, and so we will scan to the right, until the following situation exists:

x=s/c+d-
+ 1
C H

The divide operator is now forced to be compiled, and because of the reduc-
tion of the string, its operands are still immediately adjacent to the operator.
Thus the instructions

LDA
DIV ¢
ST T2

are generated, and the string is reduced to

x=7+d-]
.
C H

which does not cause the compilation of the replacement operator. At the
next shift of the pointers, the addition is forced:

LDA o
ADD d
ST T3
The string is then reduced to
x= T3 -
Tt
C H
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at which point the replacement operator is compiled:

LDA 13
ST X

and the string is reduced to

- -

which is obviously empty, thereby signifying that the compilation is
complete.

This discussion does not include provisions for the compilation of either
the involution operator or the unary minus. The former has been omitted
because most computers do not include a single instruction for the computa-
tion of an involute. For the purposes of discussion, let us assume that there
exists, at least in the assembly language, an instruction of the form

EXP a

which means ACC® — ACC. This may, in fact, assemble to a set of instruc-
tions linking to a routine that will execute this operation. The unary minus
is a special case of a function that requires a single argument but does not
necessarily compile as a linkage to a routine to compute the function. For
the purposes of this text, assume that the computer contains an instruction
to reverse the sign of the accumulator. This instruction will not require an
operand explicitly since it is implied that the operand is the accumulator.
Thus the production for unary minus will be

~<operand> — LDA <operand>
RVSG
ST <temp>

Let us now return to the problem of using temporary accumulators and
the redundancy of store and load instructions that use the same operand in
sequence. The accumulator may be regarded as a temporary storage loca-
tion until its use is precluded by the necessity to store more than one inter-
mediate result or until its position as an operand in the reduced string will
not permit the compilation of the instructions as defined above. In other
words, so long as the accumulator is the first operand of a binary operator
or the only operand of a function, a temporary storage location is not
needed. Further, instructions in the above productions either to store into
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or load out of the accumulator will be omitted except in the case of the re-
placement sign or when the accumulator is empty.

Consider the following input string:

—x=a*b+c*d-
0 1 3 2 3 0

During the first scan from left to right, when the first compilation is forced,
the pointers are set to the following positions:

—x=a*b+c*d-

ro1
C H

Under these conditions the coding

LDA a
MUL b

is generated; the result is stored in the accumulator, and the store instruc-
tion to a temporary location is not output. The reduced string becomes

—x = ACC +c*d-]|
0 0
C H

In this situation, the coding does not have to be generated for the replace-
ment sign, and thus the scan from left to right is continued. However, the
movement of the pointers does not immediately cause the compilation of
the operator with which the accumulator is associated. In fact, the next
operator to be forced into a compilation is the succeeding multiply operator.
Therefore since this does not involve the result that was saved in the
accumulator, the result must be saved in a temporary location to allow the
use of the accumulator in the next unassociated production.

Thus we may state the following rule: If the in hand pointer is moved
and the previous in hand operator does not become the operator for the
next production, the result of any previous calculation must be stored tem-
porarily and that storage location must be substituted for the accumulator
in the reduced input string.

Consider the example:

XxX="~a*b+c
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The Reduced String and Decisions

Generated Instructions

—x=~a*b+c-
0 15 3 2 0
T 1
C H

l-x=ACC*b + c-

1 0

C H
V(=) < V(*); move right.
|-x =ACC * b + ¢ -

o
C H

The previous in hand operator is
now to be compiled, and the ACC is
the left-hand operand; thus no tem-
porary storage is needed.
l-x = ACC + ¢ |

() T

C H
V(=) < V(+); move right.
l-x = ACC + ¢

T
C H

The previous in hand operator is
now to be forced; no temporary
storage is needed.
|- x = ACC |

1 1

C H
At this point, the in hand operator is
not the next operator to be compiled.
However, the replacement operator
is to be forced and the accumulator
is in the correct relationship with the
operator and is to compile normally
-
The string is now empty; hence the
compilation is complete.

LDA

RVSG

MUL

ADD

ST

a— ACC
—ACC — ACC

ACC+b — ACC

ACC+c — ACC

ACC— x
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Now consider the string

x=a+b/ctd—e

The Reduced String and Decisions

Generated Instructions

~x=a+b/ctd—e-]
0 1 2 3 4 2 0

T
C H

-x=a-+b/ACC — e

1 1
C H

Immediately after the compilation
of the operator of involution, the
pointers are set as shown above. In
this situation, the in hand operator
did not become that to be compiled
next. Further, although the forced
operator (/) does have the accumu-
lator as one of its operands, it is the
divisor that is in the accumulator
and not the dividend. Hence the con-
tents of the accumulator must be
stored temporarily.

-x=a+b/m —e-

T
C H

Having stored the contents of the
accumulator, we are effectively com-
piling a new statement. Thus the first
operation will be that of loading the
accumulator.

-x=a+ ACC — e

1 1
C H
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The Reduced String and Decisions

Generated Instructions

Once again the forced operator is
not that which was in hand, and
therefore the contents of the accumu-
lator must be saved.

~x=a-+71—e-

T 1
C H
|-x = ACC — e
) )
C H

After the generation of the instruc-
tions pertinent to the addition opera-
tor, the pointers are set as shown
above, and since the V(=) is less
than V(—), then the previous opera-
tor is not forced. A single shift left
of the pointers will indicate that the
in hand operator becomes that to
be compiled. Thus no temporary
storage location is needed.

- x = ACC -]

1 0
C H

In the above situation, the in hand
operator has not become that to be
forced; however, the operator being
forced is the replacement sign, with
the accumulator in the correct re-
lationship.

!

T
C H

Compilation is complete.

ST T2 ACC —> 79
LDA a a— ACC
ADD 7o ACCH 1, — ACC
SUB e ACC — e —> ACC
ST x ACC— x
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In the latter example, two instructions and a storage location could hav
been saved if it had been recognized that an add operation is commutative
for although the accumulator was not in the correct relationship to th
operator with respect to our rules of productions, the add operation coul¢
have been generated by the first operand. In general, the commutativi
operations are particular cases which are in a minority among the tota
number of operators. However, a survey of operations executed will shov
that these two operations ( + and * ) are most frequently used. Thus i
would be advantageous to arrange the productions to produce efficien
codings of these operations. With respect to the subtraction operation, if
instead of the in hand operator, the operator immediately to the left of th
last forced operator is the one to be compiled, the sequence of instruction:
RVSG and ADD may be used to simulate the subtraction without the use o
a temporary storage location. For example,

XxX=a—bx*c

The Reduced String and Decisions Generated Instructions

—x=a—b*c-
0 1 2 3 0

2 ,TI IDA ¢ c¢—s ACC
MUL b ACC+*h — ACC
—x =a— ACC -]
i T
C H

At this point the contents of the

accumulator are to be subtracted

from the value of the variable a. RVSG —ACC — ACC
ADD a ACC+a — ACC

- x = ACC ]|
1 0
C H
ST X ACC— x
-
T 1
C H

Compilation is complete.

This saving in instructions and storage cannot be extended to the other
noncommutative operators / and 1. However, there can be an overall saving
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within a program if reverse divide and reverse involution are performed
by a subroutine. That is, if the subroutine will save the contents of the
accumulator in a private (local) storage area, the first operand can be
placed in the accumulator and the operation performed in the normal
manner; the only instructions needed in the program proper are the linkage.

Suppose 7 instructions are required to link from the main line program
to the subroutine which itself consists of m instructions, whereas in line
coding p instructions would be required; then if p > n and the operation is
repeated in the total program more than m/(p—n) times, there is a saving
in instructions but not necessarily in time. The compiler writer, knowing
the environment in which the system is to be used, must determine whether
it is more important to save memory space or execution time. For the sake
of the present discussion, consider two macro-instructions:

RDIV a a/ACC — ACC
REXP a a}ACC — ACC
For example,

x=a—b/ct(e—1)

Reduced String Generated Instructions

x=a—b/cte—f-
0 1 2 3 4 12 0

T 1
C H LDA e
SUB f
—x=a—b/c?ACC-
i T
C H
REXP c
—x=a—b/ACC-
i) 0
C H
RDIV b
l—x=a—ACC-—|
) 0
C H
RVSG
ADD a

Continued on p. 194.
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Reduced String Generated Instructions
- x = ACC -
7 )
C H ST X

Compilation is complete.

Problem

8.1 Show the successive steps of analysis to code the following arithmetic
statements:

(@) x=(=b4(b*b—fxaxc)th)/(t*a)
(B) y=(=a*b+c)t(—(d—e))

(¢) z=—d—a+b/(cxe—f/g)

(d) v=C(a+b) — (c+d)

() n=—atb/(—(atb))

In normal practice, the hierarchy of operators places a unary minus at
a higher level than all other operators; thus expressions such as @ * —b and
a® —b are parenthesized so that the sign of the second operand is always
reversed before the operation to its left is executed. However, this also im-
plies that the following translations:

—axb — ((—a)*b)
—ath — ((—a)1h)

The latter is a possible meaning, but, in general, if b is a mixed number
(integer + fraction), the result of ((—a) 1 b) is undefined. Therefore let
us define —a 1 b as meaning — (a1 b). While — (a * b) can be accepted as
a meaning for —a * b, —a + b cannot be translated as —(a + b). Thus if
the unary minus is placed between +,— and *,/ the resultant meaning will
be as desired. However, this meaning creates some ambiguity as to the
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possibility of the occurrence of two operators without separating operands.
To overcome this problem, let us insist that no two operators may be placed
in sequence except when the replacement sign and unary minus occur in
juxtaposition. Thus the hierarchial table is revised to the sequence

-~

; — (binary)
(unary)
=/

T

Wk W= O

with the adjustments of +10 for ( and —10 for ).

If the reverse operations for subtraction and division and involution are
regarded as standard operators, scanning from the left after the initial loca-
tion of a prime operator is simpler and conserves time since, in general,
the majority of the scanning is to be performed to the left. Consequently, as
a regular procedure, the operand to the left of the in hand operator is placed
in the accumulator first. Consider the input string x = a — b.

Reduced String Generated Instructions
-x=a—b-
0 1 2 0
T 1
C H LDA b
RVSG
ADD a
- x = ACC -
i\ T
C H ST x

In this particular production sequence, a two instruction sequence, not
a true reverse subtract operation, has been introduced. Another technique
of simulation for the reverse subtract is:

SUB a ACC — a— ACC
RVSG —ACC — ACC
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Let us consider the previous example:

Reduced String Generated Instructions
x=a—b-
0 1 2 0
T 7
C H LDA b
SUB a
RVSG
- x = ACC -
i 1
C H ST X

If the expression being compiled had been
x=—(a—»>b)

the instructions generated would have been as follows:

Reduced String Generated Instructions
x=—=(a—5b)-
0 13 12 0
T 1
C H LDA b
SUB «a
RVSG
- x = — ACC -
i\ 1
C H RVSG
- x = ACC -
i 1
C H ST X

In this case, the accumulator is reversed in sign in two successive instruc-
tions, each canceling the effect of the other and therefore being redundant.
This effect was discussed in Chapter 7 with respect to moving reverse
sign operations (unary minuses) through an expression in order to find a
canceling operation. During compilation, the order in which instructions
are generated is controlled somewhat by the various hierarchial levels of
the operators, and thus complete analysis of the expression, as was per-
formed in Chapter 7, is not necessarily economical. However, if the in-
structions are ordered so that the reverse sign operation is the last to be
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generated in a production, then there is a chance of either canceling it with
a subsequent reverse sign operation or combining it with another operator.
The algorithm of generation should take note of the generation of a reverse
sign operation and check to see if the next instruction is also a reverse sign.
If this is the case, then both the generated instructions may be canceled
before they are passed into the object code. Further, if the operator to
be generated next is either an ADD or SUB and the accumulator is the
right-hand operand, then these operations may be converted to their oppo-
site operation without affecting the true representation of the expression.
Consider the following examples.

Generated String

Reduced String
Without Reversal With Reversal

x=a— (b—c)-
0 1 2 12 0
T
C H LDA ¢ LDA ¢
SUB b SUB b
RVSG
-x =a— ACC -
i) )
C H SUB a
RVSG ADD a
-~ x = ACC -]
i) T
C H ST X ST X
lx=a+ (b—c) -
0 1 2 12 0
T 1
C H LDA ¢ LDA ¢
SUB b SUB b
RVSG
- x =a+ ACC -
T 0
C H ADD a SuUB a
RVSG
—x = ACC |
T 0
C H ST X ST X
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The instructions generated in the first example show that there is a saving
of two instructions when reversal is taken into account, whereas in the
second example, there is no saving. The strings generated with reversal
show that when the reverse sign instruction is kept back until the next pro-
ductions are generated, the reversal of the ADD or SUB instructions can save
instructions and, if not, will not be detrimental to the program. It is better
to save instructions occasionally, than to allow the generation of uneco-
nomical sets of instructions.

In each of the above examples, the in hand operator has forced the com-
pilation of the left-hand operator. When a move to the right is needed, the
production rules are different, since in this case the accumulator is the left-
hand operand and the normal mode of operations is possible. For example,
the input string x = a — b — ¢ produces the instructions

LDA b
SUB «a
RVSG

SUB ¢
ST X

However, if the subsequent subtract had been converted to an add while
the reverse sign was maintained on the outside of the grouping, the same
number of instructions would have accrued. That is,

(x=a—b—c) = (x=—(b—a)—c) = (x=—((b—a) +¢))

the latter generating the coding

LDA b
SUB «a
ADD ¢
RVSG

ST X

This allowance in the algorithm does not show any increase in the object
coding, but the movement of the unary minus (reverse sign operation) to
the outside of the expressions and subexpressions increases the possibility
of the unary minus being canceled.

If a unary minus is located or brought to the outside of a group and the
next operator is either a * or a / without an intermediate store in a tem-
porary location, the unary minus may be carried further. However, if the
next operator is the involution operator, the RYSG must be executed inde-
pendently of the direction of the scan.
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Problem

8.2 Generate the coding for the following expressions, indicating the process
of production step by step.

@ - [+ o]
(b) (—ab + )=t
(©) —(a—(cx(=b/(d=))))

Scanning by Tables

Within a computer, it is not economical to analyze an arithmetic ex-
pression in its algebraic linearized form. It is particularly inconvenient to
keep moving about an expression and replacing groups by a notation which
indicates that the result is either in the accumulator or in temporary storage.
Further, as the expression is analyzed, it becomes vacuous, and time is
wasted if the compiler must scan blanks in the statement and blocks that
have already been scanned, or must condense the statement.

To avoid these problems, let us scan the statement left to right and place
the operands in a table of encountered addresses (TEA) and the operators
in a table of encountered operators (TEO). For this illustration, we shall
also maintain two other tables: one of operator levels and one containing
the location of the in-hand pointers. Even before each statement is examined,
the left-hand end delimiter ( |~ ) is placed in TEO, and when the end is
located, the right-hand end delimiter ( —| ) is generated. As the scan is
conducted, each new operator encountered (except the end delimiter to
the left of the statement) is placed in the “in-hand” bin. If the new operator
is of a lower level or equal level to the operator last placed in TEO, then the
last two operands are used and the last operator placed in TEO is used in
the production that generates the required code. These operands and opera-
tor are removed from their respective table, and a new operand is placed
in TEA, indicating that the result is in the accumulator. The “in-hand” opera-
tor is then compared to the (new) last operator in TEO. If this operator is
still of a higher hierarchical value than that in hand, this operator is also

t The ease with which the end of an arithmetic expression is located depends on
the statement in which it is embedded. For example, if the statement under consider-
ation is an assignment statement, then the end of the expression is also the end of the
statement. In other types of statement (for example, the IF statement) the decision-
making machinery for recognizing the end of the expression may be more complex.
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forced into the compilation sequence. If not, the scan is continued to the
right, and the in-hand operator and operand are placed in TEO and TEA, re-
spectively. However, if two operands f are added to TEA before another
compilation is forced, then the previous result (now residing in the accumu-
lator) must be stored in a temporary storage location, and that location
must be recorded in the correct position in TEA. Consider the input string

XxX=a—bx*c

TEA TEO Level In Hand

- 0

1
- 2
3

*

O e X

|

At this point in the construction of the table, V( - ) = V(*) and the
accumulator does not contain anything. Hence, the last entry in TEA is
placed in the accumulator and the entry removed from TEA:

LDA ¢
The last operator in TEO is *, and its operand is b:
MUL b

The last two entries are removed from TEA and TEO, respectively, and the
table reduces to:

TEA TEO Level In Hand

x - 0
a = 1
- 2 -

At this point, V( —| ) is still less than V(last entry in TEO), so we are, in
effect, scanning left. The accumulator is presently in use so it does not
have to be loaded. Thus the last operator and operand are the relevant
items for the construction of the next instruction:

SUB «a

 For the time being, only binary operators are being considered.
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The next instruction to be generated should be the RVSG, which will be
held in reserve until the items relevant to the last instruction generated are
removed from the tables. The reduced table now shows that the replace-
ment sign is the last entry in TEO, and the in hand operator is still the right-
hand end delimiter. Since no more items are to be added to the table and
the in hand operator is forcing the compilation of the instructions pertinent
to the replacement sign, the RVSG instruction will not have the opportunity
to interact with any other instructions. Thus it may be placed into the
object code. The table is now:

TEA TEO Level In Hand

= 1 -

and since V(in hand operator) is still less than V(last entry in TEO), the
instruction

ST X

is forced. The TEA table is now empty, and TEO contains only the left-hand
delimiter which is to be matched with the right-hand delimiter in the in hand
column. Thus the compilation is complete.

Now let us consider the expression
x=a*b+c*d

Scanning from left to right, the tables are built up until the following situa-
tion exists:

TEA TEO Level In Hand

x |— 0
a = 1
b * 3 +

At this point, V(in hand operator) is less than V (*), and the accumulator
is empty since no coding has been produced previously. Hence the generator
produces the following instructions:

LDA b
MUL «a
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and the tables reduce to:

TEA TEO Level In Hand

= 1 +

But, V(in hand operator) is not less than or equal to V(TEO operator), and
so the ACC must be added to the TEA and the scan continued.

TEA TEO Level In Hand

x |- 0
ACC = 1
c + 2 *

At this point, the in hand operator of the last production is not forced into
the compilation cycle by the new in hand operator. Therefore the contents
of the accumulator must be stored in a temporary storage location and the
TEA updated to reflect this storage. The instruction produced is

ST T1

Scanning of the input statement is continued and the table is constructed to
the point, shown below, where the level value of the in hand operator forces
the next compilation:

TEA TEO Level In Hand

x - 0
T1 = 1
c + 2
d * 3 -

Now the accumulator may be considered empty since the last computed
result has been placed in temporary storage. Thus the generated instruc-

tions are
LDA d

MUL ¢
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After the last operator and its operands are removed from the tables, the
level value of the in hand operator is still less than that of the last entry in
TEO, thus forcing the compilation of this operator:

ADD T1

Since the end delimiter always has a level value less than every other opera-
tor, except the left-hand delimiter, all operators will be forced into the
compilation cycle. In this case, only one other operator exists in the TEO
besides the left-hand delimiter, that is, the replacement sign. This causes
production of the instruction

ST x
after which the tables are empty and the compilation is complete.

Let us now consider an example involving a reversal of an operation
caused by the interaction of a unary minus (or RVSG): The input string
x =a — (b — c) contains parentheses that will be discarded during the scan
and will not be placed in TEO. However, when the left parenthesis is en-
countered, all levels of hierarchy are incremented by 10, and when the
closing parenthesis is recognized, the levels are reduced by 10. If at any
point the levels become negative, then there are additional closing paren-
theses that appear before their matching opening parentheses, and an illegal
statement is in the input area. Similarly, if the level of the end delimiter is
not zero after a series of hierarchial incrementations and decrementations,
then unmatched parentheses exist in the input string.

For the above string, the table is constructed to the point where the end
delimiter is the in hand operator.

TEA TEO Level In Hand

x - 0
a = 1
b — 2
c - 12 -

Since no instructions have been generated up to this point, the accumulator
is not in use, and hence the first instruction must be to load the accumulator
with the last entry in TEA.

LDA ¢

SUB b
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The RVSG instruction is held in reserve; the tables are reduced by the
operands and the operator used in the last production. The last entry in
TEO is now —, which is to be forced by the in hand operator. In effect, the
scan is proceeding to the left across the input string; therefore the unary
minus (RVSG) will interact with this operator and convert it to an ADD
operator, and the RVSG instruction which is being held in reserve will be
discarded. The table is thus reduced and modified to

TEA TEO Level In Hand

x = 0
a = 1
- 2 -

The in hand operator, which is the end delimiter, will now force the com-
pilation of the instructions relevant to the last entry in TEO, and since the
accumulator is still in use, no temporary storage is required. The instruction
generated is ADD a. Finally, the in hand operator forces the compilation of
the replacement operator, ST x.

Now, consider the string x = a — b — c.

TEA TEO Level In Hand

x |— 0
a = 1
b — 2 —

At this point, the accumulator is not in use, and compilation of the operator,
—, is being forced by an operator of the same level.

LDA b
SUB «a

After the operands and the operator have been removed from the tables
(and an RVSG is pending), the current operator (that is, the item in TEO
that is now unmasked) will not be forced by the in hand operator and thus
the table must be constructed further until the next forced operator is dis-
covered. The pending RVSG operation is equivalent to a unary minus that
is operating on the accumulator and will be placed in the TEO. Normally,
this should be forced into compilation except under one condition: if the
next operand (which is currently in hand) is to be forced at the next stage.
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If the next operand is not to be forced then this operation must be forced.
In this example, the in hand operator is the next to be forced and will be
converted to +. Thus before the next stage of compilation, the tables are
as follows:

TEA TEO Level In Hand

x - 0
ACC = 1
c ~ 3
+ 2 -
In effect,
~ACC — ¢

has been converted to the equivalent form ~(ACC -+ c¢). If the next operator
had not been forced, then the reverse sign operation would have had to
have been compiled into the object coding. However, if for any reason, the
next operator had been either a multiply or divide, the reverse sign could
have remained in the table. In the above case, the compiled instructions are,
successively:

ADD c
RVSG
ST X

Problem

8.3 Using the tabular method of compilation, generate the instructions for
the following input strings:

(a) x=~a—b—c—d

(b) x=~(a—b) + (c—4a)
(c) x="p ¢

(d) x=

) y=(x;+ Xi11)/2Zn—2
(f) y=rcos (x)
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Subscripted Variables

Before considering the actual inclusion of subscripted variables in ar
arithmetic statement which is to be compiled, two points should be noted

(a) Subscripted variables are not peculiar in an arithmetic statement
They play the same part as any simple variable. In other words, sub-
scripted variables vary from simple variables in their notation but not in
their use.

(b) The computation required to locate the address of a subscriptec
variable (or in purer mathematical terms, to locate the element of an
array), is dependent on the dimensions of the whole array in which the
element is located.

When a DIMENSION statement is located in a program, not only is space
reserved for that array but also information is generated which aids the
compilation of instructions to generate the address of the particular element
under consideration. As a review of this procedure (described in Chapter
4), consider a two-dimensioned array specified in the statement:

DIMENSION A(5,3)

and a reference in an executable statement to the element A(2,2). At the
time the storage for A is set up in SYMTAB, the address of the base of A
(that is, the fictitious element A(0,0)) is computed and is available to
the compiler at the time when the instructions to locate the particular ele-
ment are generated. The location of A(2,2) may be computed from the
expression

Address(A(2,2)) = Address(Base of A) — (2%5 + 2)

In general, if one is presented with a DIMENSION statement containing the
specification
DIMENSION A(d;,dy,ds, . ..dy)

T In this discussion, it is assumed that the object time memory layout is such that all
data are stored in high order memory, with elements of arrays placed in descending
locations. Such a practice has not been followed in IBM System/360, where arrays
are stored in ascending storage locations. See IBM form No. C28-6515-4, IBM
System/360, FORTRAN IV Language.

Further, the formulas must be amended when either the data being referenced are
stored in multiple word blocks (for double precision or complex data) or the com-
puter on which the compiler is being implemented is character rather than word
oriented.
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and wishes to refer to any element
A(S1,82,83,...5v)
then one can evaluate the expression

Address(A(1,1,1,...1)) — (sy —1) — dy (s2 —1) — dids (55 —1)
— d1d2d3 (S4 —1) —_ ... d1d2d3 . ‘dN——l (SN —1)
That is,

Address(A(sy ,82,53, . ..S5y)) = Address(A(1,1,1,...1))
N i—1
— X {1l d}(si —1)
i=1 k=0
where it is assumed that d, = 1. Since the coefficients of the product will
be required each time a subscripted variable address is to be calculated,

one should calculate this product when the DIMENSION statement is en-
countered, rather than leave it for the individual generators to calculate.

If
i—1
pi= II d and pr=1
k=0
then
Dit1 = aiDi, for 1<i=(N-1)
and hence
N
Address of element = Address(A(1,1,1,...1)) — 2 p; (si —1)
i=1
That is,

N N
Address of element = Address(A(1,1,1,... 1))+ X pi — X pis;
i=1 i=1
Now since the terms

Address(A(1,1,1,...1)) and 2D
i=1
are constants, they may be combined into a single constant term which is
computable at the time that the DIMENSION statement is under considera-
tion. This is the constant that was referred to as the BASE of the array in
Chapter 4. In fact, the address of the BASE of an array is also the address of
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the fictitious element A(0,0,0, ...0). If the subscript expressions are re-
stricted to the standard form, that is,

<integer constant>*<integer variable>{+|—} <integer constant>

then all the computations required to compute the address of any element
may be performed with the use of only one temporary storage location. In
particular, if the computer being used at object time has index registers, the
result of the computation of

N

—Xp

i=1
may be placed in an available index register, and then the instruction that
references that particular element will have the operand address of the base
of the array that is influenced by that index register.

In general, a subscript, irrespective of its form, that is standard (c*v=tk)
or nonstandard (any expression that results in an integer value), may be
broken down to the form:

<variable expression> *+ <constant expression>

where the <variable expression>> contains not only variables but also any
associated multipliers or divisors that are constants. That is, the subscript

(3% + 32/1)*4 4 32
contains the <variable expression>
(3*1 + 32/1)*4
and the <constant expression> +32.

If all subscripts are broken down in this manner, the address of a sub-
scripted variable may be computed from

N N
Address(base of array) — X p;c; — X p; v;
i=1 i=1
where ¢; is the <constant expression> of the subscript s;, and v; is the
<variable expression>> of the subscript s;. At compile time, in the subscript
evaluation generator, the base of the array may be further adjusted by the

term
N
—.Z Di Ci

i=1

thus saving valuable execution time.

208



SUBSCRIPTED VARIABLES

During the compilation of a subscript evaluation instruction set, the de-
limiting commas and parentheses have special meanings and, in fact, imply
arithmetic operations. In particular, after the opening parenthesis, the
address of the base of the referenced array is to be placed into a special
compile time word for further manipulation. If one considers only standard
subscripts, it can be seen that the first subscript may easily be separated
into its two parts: The instructions to compute the <variable expression>
may be placed into the object time coding, and then the value of the
< constant expression> may be evaluated and the result applied to the base
address of the array to produce an adjusted base for modification at object
time. If this first subscript is also the only subscript needed to refer to an
element of the array, instructions to store the resultant element address in
a chosen index register may be generated. In fact, this set of instructions
will be generated whenever a closing parenthesis of a subscripting set is
encountered. On locating any delimiting comma or the closing parenthesis,
instructions to multiply the value of the variable portion of the subscript by
the p; value must be generated. To enable the performance of this opera-
tion, the constants p; to py must be stored in the object time data table.
At the same time, the value of the constant portion of the subscript must be
applied, along with the associated multiplying factor, to the adjusted base.

In the compilation of any general expression, the problem of deciding
when to compute the addresses of references to elements of an array cannot
be solved, either simply or uniquely. Whenever a subscript evaluation is
required, the existing contents of the accumulator must be stored. Conse-
quently, it is not always efficient to attempt to evaluate subscript expressions
within the computation of the value of the containing expression. For
example, the expression:

A(1,)) = B(LK+3)*C(L) + A(l,J—=1)

would compile, without subscript evaluation, to the sequence:

LDA C(L)
MUL  B(1,K+3)
ADD A(l,J—1)
ST A(L))

Suppose that the arrays mentioned above are described in the statement:
DIMENSION A(5,3), B(10,2), C(25)
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If the subscript evaluation instructions are superimposed over the abowv:
coding, the total set of instructions would be expanded to the set:

LIR L1
LDA L
RVSG

LIR ACC,1
LDA Base of C,1
ST T1
LDA l

ST T2
LDA K

MUL Cc10
ADD T
RVSG

LIR ACC,2
LDA 1
MUL Adjusted base of B,2
ST T2
LDA |

ST T3
LDA J

MUL C5
ADD T3
RVSG

LIR ACC,3
LDA T3
ADD  Adjusted base of A,3
ST T3
LDA I

ST T2
LDA J

MUL C5
ADD T
RVSG

LIR ACC/4
LDA 73

210 ST Base of A,4
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where the mnemonic LIR stands for LOAD INDEX REGISTER, and the second
operand in the instruction refers to the influencing index register. C5 and
C10 are the locations of the constants 5 and 10, respectively.

The above coding suffers from several deficiencies, but two specific
ones are worthy of note: (a) If the first subscript has a variable expression
that is a single variable, successive LOAD and STORE instructions are
generated; (b) as each “main line” operation is performed, the result must
be stored in a temporary location. If the subscript evaluations had all been
performed first, none of the latter store instructions would have been re-
quired. However, the situation would be no better if a complete statement
were scanned and all subscript instructions generated before the “main line”
scan were executed. Thus in a normal scan, subscript evaluation instruc-
tions may be generated as the subscripted variables are encountered. In
other words, an opening parenthesis of a subscript should be regarded as a
forcing operator; the subscript expression between that parenthesis and the
closing parenthesis should be evaluated and then the array name in TEA
replaced by the adjusted address and the normal scan continued.

Consider the expression:
A(,)) = B(LK+3) *C(L) + A(l,J-1)

and the tables that are formed to the point:

TEA TEO Level In Hand

A = 0
1 ( 10 )

At this point, a delimiting comma is located within a subscripting group
and the accumulator is not in use. Thus one may generate the instructions

LDA |
ST T1

where the result is placed into a temporary storage location since the forcing
operator is a delimiting comma and further subscripting evaluation instruc-
tions that will utilize the accumulator are anticipated. Move the subscript
and the forcing operator to TEO and continue the scan.
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TEA TEO Level In Hand

A - 0
T1 ( 10
J , 1 )

At this point, the complementary closing parenthesis of the subscripting
group is encountered which will force the evaluation of the last subscript:

LDA J
MUL C5

The closing parenthesis will now force the previous subscript and generate
the instruction
ADD

Next, the opening parenthesis is forced by the closing parenthesis; the sign
of the subscript expression must be reversed to effect the correct adjust-
ment of the address, and then the result must be stored in an available
index register.t

RVSG

LIR ACC,1

Subscripting is now complete, and the tables are reduced to the point
where an opening and closing parenthesis face each other. These may now
be canceled, and the entry for the last item in TEA (which must be the array
name) will be replaced by the adjusted address. Since, in this particular
instance, the subscripting expressions contained no constants, the adjusted
address is the same as the base address of the array, and the scan may
continue.

TEA TEO Level In Hand

Adi(A) - 0
B = 1
i ( 10 :

T For the purposes of this discussion, assume that the register is capable of holding
negative values.
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By giving the opening parenthesis of a subscript group the hierarchical
level of 10 and a comma the level of 1, the subscript expressions may be
forced in a manner close to that of a normal unsubscripted expression.
Variations are incurred because the comma is considered an operator, the
closing parenthesis has two actions (acts as a comma and an end delimiter),
and an in hand closing parenthesis cancels a facing opening parenthesis in
TEO while the last entry in TEA is replaced by an adjusted address.

The use of index registers for adjusting base addresses of arrays in order
to locate a single element within the array is satisfactory until the com-
puter runs out of index registers. At worst, when one has an expression
containing no parenthesized expressions (apart from those defining sub-
scripts) and subscript adjustments are saved until all subscripts have been
evaluated, five index registers, at the most, will be required. That is, the
worst case would be an expression of the form:

A=B+4+ C=*D1E
i J k I m

1 2 4 5

where, according to the forcing techniques of the above system, all adjusted
addresses are computed before the total “main line” expression is evaluated.
However, when parentheses are included it is possible for an infinite number
of registers to be required. For example, the expression

A:B+(Ck+ (D +(E + (F+ (...
i J I m n

would be prepared in the tables in such a manner that each subscript would
be evaluated as it occurred with the associated operator being forced and
thus denying the use of that index register for other purposes. To overcome
this problem, let us evaluate the subscript expression, adjusting the base
by the constant part of the subscript, and then store the result in a tem-
porary storage location. The generic entry address in TEA is changed to the
address of this temporary location which is to be referenced indirectly.
For the purposes of this description, an indirect address will be designated
as being negative; that is, —r, will indicate the temporary location r, refer-
enced indirectly. In this case, the expression (and corresponding DIMENSION
statement)

DIMENSION A(6,3)
A(1+1,K) = SUM + A(1,LK—=1) * A(I—1,K)
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compiles to the sequence of instructions:

LDA |

ST 71

LDA K

MUL Cc6

ADD 1

RVSG

ADD Base of A — 1
ST T1

LDA |

ST T2

LDA K

MUL C6

ADD To

RVSG

ADD Base of A + 1+6
ST 7o

LDA i

ST T3

LDA K

MUL Cc6

ADD T3

RVSG

ADD Base of A + 1
ST T3

where the location C6 contains the constant 6. At this point, all operators
are forced by the in hand end delimiter and the tables are reduced to

TEA TEO Level In Hand

-7 - 0
SUM = 1
—7T2 + 2
* 4 —

—T3

Thus the remainder of the coding generated is

LDA —+3
MUL  —7p,
ADD SUM
ST —71
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For a complete description of the efficient use of index registers and the
use of a limited number of registers in the compilation algorithm, see
Horwitz et al.t

Temporary Storage Locations

The provision of temporary storage locations is truly the task of the
symbol table routines but since such provisions are needed by the ASCAN
generator, the problem will be considered here. Firstly, the question of how
many temporary locations to reserve cannot be answered definitively. Some
programs never need a temporary storage location, whereas others need a
comparatively large number, especially when such locations are used in the
subscripting calculations. Secondly, the compiler implementer must decide
whether temporary locations are to be provided from a previously reserved
array or from randomly chosen words. Thirdly, the implementer must de-
cide whether or not it is necessary to preserve memory and thus to reuse
temporary storage locations as they become free—that is, whether within a
single statement a single storage location should be used wherever possible.

Since one cannot determine the exact (or maximum) number of storage
locations that will be needed in a program, implementers, who constantly
strive for maximum available storage for the person who uses the system,
prefer not to set aside a specific section of available memory for temporary
storage locations. To reserve memory just in case it has a use seems point-
less. Thus the technique of selecting temporary storage locations from an
array is discarded in favor of selection of storage as and when it is needed.
Further, since FORTRAN and most other algebraic languages consist of
a system of discrete statements, as a minimum requirement, temporary
storage locations must be recovered before the execution of each statement.

Let us propose the following technique. If a routine requests a temporary
storage location, a new location should be chosen by the symbol table
routine as if the request were for the storage of a standard variable or
constant. However, at the same time, the SYMTAB routine should record
this reserval in a special table and note that this location is in use. In the
event that there have been previous requests, during the current compila-
tion, for temporary storage locations, this table can be checked for any
that are not in use; if available, a previously used location is preferable to
the reserval of another memory word.

# L. P. Horwitz et al., “Index Register Allocation,” Jour. ACM, Vol. 13, No. 1,
pp. 43-61, Jan., 1966.
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Once a temporary storage location has been allocated in a single com-
pilation, it should be reserved for the whole program and reused whenever
possible. Thus. all temporary locations are “freed” when the compilation of
a single statement is completed. However, ASCAN should also report the
freeing of a temporary location during a scan if space is to be conserved.
Thus the same location may be used more than once in a single statement.

By fixing the SYMTAB location of the first entry referring to a temporary
location, a linked list may be formed for sequential scanning whenever a
location is needed or is being freed. If the SYMTAB routine provides the
compile time address of the temporary storage location data to the re-
questing routine, a storage area may be freed without a sequential scan of
the whole threaded list. The SYMTAB entry may take the form:

TAG OBJECT TIME ADDRESS COMPILE TIME IN USE
FORWARD LINK TAG

The use of temporary storage locations within a subprogram must not
conflict with the storage locations being used in the calling program. That
is, since a CALL statement may include expressions that involve the use of
a temporary storage location for the transference of the value, the sub-
program must not, at any point, use these same locations. If all temporary
locations are regenerated when compilation of each new statement begins,
then the maximum number of temporary accumulators in use by a CALL
statement is equal to the number of arguments. Thus if the calling program
has used n temporary storage locations, numbered, for example, from
1 to n and the called subprogram requires k arguments, then (provided
k < n) the subprogram should not use temporary storage locations 1 to k,
as those from k+1 to n will be available. If the number of temporary
storage locations used by the calling program is less than the number of
parameters of the subprogram, then a complete new set of locations will
be required.

Problem

8.4 Write a FORTRAN program that will compute the numerical value of
numerical expressions that contain no parentheses. Each expression will be
punched into a data card in the FORMAT(8(A1,F8.3)) where the first alphabetic
field may be only a unary operator or a blank. All other alphabetic fields will be
binary operators or blank. However, a blank binary operator is to be considered
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as an end code. No data will be punched in cols. 73-80. Such a data card might
take the form
+AAAS.000%¥AA20.00040003.715,/0000.001

T
Col. 1

where A signifies a blank column. Since only one column is allocated to an
operator and the up arrow is not a standard element of a key punch, the in-
volution operator (**) will be replaced by the alphabetic character E. The
program should output the result in the FORMAT(8(A1,F8.3),1H=,E16.8) where
the input string is duplicated into the first 72 columns. The program should
check for division by zero and other execution errors within its control such as
raising a negative value to a fractional power. Note that due to the FORMAT
chosen, each piece of data may contain its sign, so that the input string

——0012.000E—1271.972*—1736.000
is valid.

Functions in Expressions

When the symbol table routine reports back to the ASCAN routine that
it has encountered a FUNCTION, the system to be activated is similar to
that which was used in the generation of instructions for the evaluation of
the address of an element of an array. However, since the inclusion of a
function such as SINF, COSF, etc., requires linking the calling routine to a
subprogram which may itself be relocatable, the action of ASCAN depends
substantially on the techniques of linkage. If one could be assured that every
function had only one argument (even if that argument were an expression),
then that argument could be regarded as the right-hand side of an assign-
ment statement, the result being placed in the accumulator. Thus the link
could be simply a MARK PLACE & TRANSFER instruction, the subprogram
returning control to the main program through a BRANCH BACK and the
result being placed in the accumulator.

However, such assurance cannot be given except in the primitive subsets
of algebraic languages. In particular, such functions as ATAN(A,B) and
MAX(A,B,C,D), though simply functions, have multiarguments. Thus a
technique must be devised whereby the arguments (or the addresses of the
arguments) can be transmitted to the subprogram. The technique to be de-
scribed here is essentially that employed in KINGSTRAN, and is applica-

¥ J. Field et al., Kingston FORTRAN II, 1620 Users Group Conference, Chicago,
1964.
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ble not only to functions but also to subroutine linkages. The argument list
is scanned from left to right, and the addresses of all arguments are placed
in a sequential list, preceded by the address of the instruction to be executed
immediately after the execution of the subprogram and succeeded by a ter-
minating mark (to be indicated herein as ).

Thus the main line program may transmit the address of the first item
in the list and then branch to the subprogram, the subprogram being re-
sponsible for picking up the arguments. In a single address machine, the
symbol table routine should provide two addresses: (1) the address of a
word in the object time data table where the address of the first element
in the list is stored, and (2) the address of the first instruction in the
subprogram. Since the subprogram is relocatable, both these addresses may
need to be referenced indirectly, the address of the entry point to the sub-
program being entered through a transfer vector.

Since the arguments may be expressions, the values of these expressions
must be placed in temporary storage locations and the addresses of these
temporary locations placed in the argument transfer list. Using this method
of linkage requires that all such argument expressions be evaluated before
the address of the list is given to the subprogram. Thus the address of the
list may be transferred through storage in the accumulator.

Let us introduce the following commands:

1. MPT Mark Place and Transfer. The execution of this instruction
causes the address register of the computer to be set to the address in the
operand portion of the instruction and a return address register to be set
to the address of the next instruction.

2. BB Branch Back. This instruction transfers control to the instruction
with an address stored in the return address register.

3. B Branch. A standard branch (or jump) instruction defines the next
instruction to be executed in its operand portion.

4. DA Define Address. This is not truly an instruction but a declarative
to the assembler to place the address defined in the operand portion of the
symbolic instruction in the next word available in the memory.

Let us now consider the linkage to be generated when an arithmetic ex-
pression references a function. For example, consider the function call

MAX(A, B+C, E/D, F)
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where it is meant that the maximum value of the four arguments is to be
returned to the calling statement, and where the number of arguments in
the list is unlimited. Each argument must be considered primarily as an
expression and the result stored in a temporary storage location if any
arithmetic operators are included. Thus in this situation, the delimiting
commas and the closing parenthesis are to be considered as expression
end delimiters. The above expression would be compiled to the set of
instructions:

DA C
ADD B

ST T1
DA D
RDIV E

ST T2
DA *+2 55 JMS MAX—1] *
B MAX
DA  *+6
DA A
DA T
DA T2
DA F
DA <

where * means “this address” and MAX 1 is a reference to the first instruction
in the function MAX.

When an argument is a constant, the address of that constant should not
be communicated to the subprogram as a precaution against its value being
altered in the subprogram. For example, if the parameter list of a sub-
program contains a parameter that is to be used as both an output and an
input parameter, it would be unfortunate if, by an error in programming,
the value of the constant were changed. Storing the value of the constant
in a temporary storage location instead of giving a direct reference to the
actual location of the constant will prevent this possibility.

When a function preference is noted in the input string, the generator
must take special actions in order to regard that reference as a single value.
In particular, it may not be necessary to compile the linkage instructions to
the function immediately. The entry in TEO may then be the pseudo-operator
F, standing for “function,” together with a pointer to the left-hand paren-
thesis of the argument list. The function name may then be regarded as an

T (See page 231) 219
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operand until it is necessary for the function to be evaluated, the entry ir
TEO being the key to the requirement of evaluation. The link pointing tc
the input string will then give access to the arguments, some of which may
need evaluation themselves. This technique then conforms to the general
algorithm for the evaluation of expressions containing simple variables and
may save on the use of temporary storage locations by only evaluating
functions as they are required. On the other hand, it is feasible that a pre-
liminary scan of the statement to locate function references, evaluate these
functions, and store the results in temporary accumulators will achieve the
same effect at object time. If this course is chosen, then a temporary storage
location must be available for the result of each function reference. After
these evaluations, the input string must be modified to remove the function
names and the list of arguments, replacing these items by the address of
the temporary storage location. These special actions necessary for com-
piling statements within a subprogram that include references to formal
parameters will be considered in the next chapter.

Problems

8.5 Amend the hierarchy list for simple arithmetic operators to include the
special operators involved in subscripting computations.

8.6 Develop the production rules for the subscripting algorithm.

8.7 Extend the hierarchy tables of Problem 8.5 to include function refer-
ences within arithmetic expressions and develop the production rules for com-
piling the instructions for the evaluation of arguments of a function reference
and the linkage.
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The subprogramming in algebraic languages serves two main pur-

poses. In the first place, a subprogram conserves both memory space
and programmer time when a particular operation or set of operations must
be performed repeatedly under different circumstances and with varying
sets of data. The programmer may consolidate his coding into a single set
of statements and then execute that set by either using a single statement
or including a reference to that subprogram in some other statement.
Secondly, subprogramming enables the creation of program libraries where
the programmer can find programs already coded by others. This provision
may be available in one of two forms: Either the executive operating system
of the computer may be programmed to fetch the subprogram from auxiliary
storage where it is kept in machine language or the computing center may
keep a card library of subprograms in source code available for inclusion
by the programmer.

221



COMPILING WITHIN A SUBPROGRAM

Recognizing the Problem

To use a subprogram, the programmer must follow one of two courses:
He must provide, from a library or by creating it himself, a subprogram in
source code which requires compilation, or he must rely on the operating
system to provide a machine language subprogram from its own library.
In either case, the compiler must provide the instructions, within the object
code produced from the calling program, to link the calling program to the
subprogram, to provide a means of return from the subprogram to the
calling program, and to transmit the data to be used to the subprogram.
When an algebraic language is to be developed to operate under an already
existent executive system, the compiler originator may have no choice in
the design of the linkage instructions to system library subprograms; for the
sake of consistency, he should use the same linkage instructions to link
into subprograms that were defined in source code by the programmer.

In general, references to subprograms in FORTRAN source programs
may be recognized by the compiler by default. Since a subscripted variable
has the same syntactical form as a reference to a function, the symbol table
routine must provide to the appropriate generator the information that the
reference is being made to an item that has not been defined in a DIMENSION
statement. By default, this is to be considered a reference to a function sub-
program. A reference to a subroutine subprogram is spemﬁc in that refer-
ence is made through a special calling statement.

In either event, the compiler will, at the recognition of an END statement,
have in its possession the necessary information to determine which sub-
programs are required by the program being compiled. However, it cannot
tell at that time which of these subprograms are to be obtained from the
library and which are to be provided in source code by the programmer.
Thus only when the entire job is compiled, can the system decide which
subprograms the programmer has assumed are available in the system
library. Also when the decision is postponed until this time, the system is
provided with some subprograms whose names could be the same as those
stored in the library; thus if the system removes the names of required sub-
programs from its list as they are provided, there will be no confusion in
the naming. For some peculiar reason, this is a serious shortcoming of
many systems.
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When the programmer requests the use of a library subprogram, the task
of the compiler is influenced not only by the form of the standard linkage,
but also by the manner in which the subprogram is loaded into memory
and the tasks which are fulfilled by the loader. In particular, since previously
compiled subprograms are stored in machine language form, they must be
programmed (or compiled) so as to be relocatable in memory. To insist
that any particular subprogram be placed in memory at the same set of
addresses each time it is loaded will so restrict the use of available memory
that inefficient systems will result. For example, assume that a system library
contains 50 subprograms, each consisting of about 200 words. If it were
possible for a single program to call upon any one or all of the subprograms
and if it could be shown that in any one program the use of one sub-
program would not destroy the usefulness of any other subprogram, then
10,000 word positions would have to be permanently reserved for their
possible storage. On the other hand, if the subprograms were to be stored
in the same locations each time they were used, this would alleviate the
problem of linking to them from the calling program.

The problems of creating relocatable machine codes will not be con-
sidered here since the implementation of this option is machine dependent.
However, the loader of relocatable programs is required to provide data
which will be resident during the execution of the object program and which
may not be considered a part of the function of the loader. As a general
rule, the linkage instructions in the calling program must refer to the entry
point to the subprogram in order to execute that subprogram. At the time
of compiling a subprogram reference, the final storage location of that
subprogram may not be known. This is not, in fact, a disadvantage when
it is realized that references may be made to subprograms by the use of a
parameter in a subprogram, without the compiler being aware of the re-
quest. Thus at compile time, an instruction may be generated which refer-
ences an address in the object time data table indirectly and into which
address will be placed the actual entry address to the subprogram.

When, as part of the job, the subprogram being referenced is provided
in source language, the compiler will arrange to store the object time address
in this location. When the subprogram is to be provided by the system, the
loader must undertake this task.
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Provision of Data to the Subprogram

Now that a means of transferring control from the calling program to the
subprogram has been established, it is necessary to provide a means for
transferring data. In particular, since the relationships between the names
of arguments in a reference to a subprogram and the formal parameters are
not indicated in the defining statement, the references to parameters in the
subprogram are not linked directly to the object time data table entries of
the arguments. These links must be forged at object time.

On recognition of the defining statement of a subprogram, the compiler
sets aside a vector in which the addresses of the arguments are to be stored
by the linking instructions. All references to formal parameters within the
subprogram would then be indirectly addressed to these locations. The
order of the formal parameters in the defining statement is assumed to
be the same as the arguments in the calling statement and thus there will
be a one to one transference of addresses from the calling program to
the subprogram vector. However, the calling program is not certain as to
the location of the subprogram, and thus several instructions would be re-
quired in the calling program which would otherwise be superfluous. Thus
if the task of transferring the addresses is assigned to the subprogram itself
and the calling program provides the address of a similar list from the data
table, the subprogram can access the data by transferring the addresses only
when it is absolutely necessary.

In several computers, the linkage to a subprogram may be accomplished
by the use of special instructions which provide some of this information.
For example, in the PDP8, the JMS instruction (JUMP TO SUBPROGRAM)
transfers control to the address defined in its operand plus one and places
the address of the instruction to be executed on return in the word defined
in its operand position. Thus if this instruction is used in a slightly different
manner than that for which it was defined, the operations described above
may be accomplished. At compile time, the instruction to jump to the sub-
program will be generated, followed by a list of the argument addresses. At
object time, the subprogram may utilize the address that is provided as the
return address, as the address of the first item in this list of argument ad-
dresses and may collect them for transfer to its own vector. Further, if the
return address is included in the list, it may be picked up as a standard
piece of data and stored in a special location in the vector. Thus the follow-
ing FORTRAN would compile as shown alongside:
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CALL SUB(A,B,1.)) JMS —SUB
DA A
DA B
DA |
DA J
DA (Return Address)

SUB DA O (Address to be
T filled in later by
<o the loader)

SUBROUTINE SUB (X,Y,K,L) DA O (Address to be pro-
vided by the JMS
instruction)

SUBENT LDA —SUBENT+1
ST X
LDA SUBENT-—1
INA =1
ST SUBENT-—1
LDA —SUBENT+1
ST Y
LDA SUBENT—1
INA =1
ST SUBENT—1

When the machine does not provide this special type of linkage instruc-
tion, the instruction must be simulated by the use of a normal uncondi-
tional branch with, for example, the address of the argument list stored in the
accumulator. An example of this form of linkage was shown in Chapter 8.

Storage Allocation

Using a special vector of argument addresses within. the subprogram is
equivalent to reserving storage for the actual values of the parameters of the
subprogram. To some extent, this storage may be saved by using the same
area of memory for this purpose by each subprogram, provided that the
subprogram does not reference some other subprogram that utilizes the
same area. For example, in the IBM 1620, the low order 100 digit positions
are not generally used for the program and are supposedly reserved for con-
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sole input storage. If the compiler writer can be sure that this storage will
not be used for this purpose (and, in general, he has sufficient control to
enforce such a requirement), then this area can be used for the storage of
argument addresses. Further, in this particular machine, data can be trans-
ferred as complete records and are not restricted to the movement of single
words of data; thus if the addresses are arranged at compile time to form a
single record, the addresses may be transferred from their usual storage
area to this particular area by a single instruction.

Though the amount of storage required for the address of a simple varia-
ble is equal to that required for storing the value of the argument, this is
not the case for arrays. As far as the calling and defining statements are
concerned, the only data transferred between the calling program and the
subprogram are simple variables. Only when the DIMENSION statement in
the subprogram is encountered, is it realized that a parameter is a reference
to an array. However, since addresses and not the actual data are being
communicated to the subprogram, there is no need to provide storage for an
argument array in the subprogram.

However, the calling program does not possess the information that an
array is to be transmitted and, in fact, this knowledge is kept from the com-
piler so as to allow the transmission of portions of arrays. That is, the name
that appears in the argument list may not be the name of the whole array or
even the first element in the array: If a portion of an array is to be trans-
mitted, the argument is the first element in the portion to be transmitted.
This creates a problem as to which address should be transmitted. As has
been pointed out in previous chapters, the most efficient form of subscript-
ing algorithm may be constructed by choosing the base address of an array
as the address of the fictional element with zero subscripts. However, the
definition of the base address depends on the dimensions of that array. In
the case of providing an address to a subprogram, there is no rule prescrib-
ing that the dimensions of the array, which is the parameter in the sub-
program, should agree with those of the argument, either in size or number
of subscripts. Thus to transmit the base address of an array as defined in
the calling program may not coincide with the address that would have
been created in the subprogram using the dimensions stated there. Further,
if the whole array is not intended, the argument may not be the first
element, but the first element of the portion to be transmitted. To overcome
these difficulties, the address of the first element in the array will be trans-
mitted when only the name of the array appears in the argument list, and
the actual address of the element, when a particular element is mentioned.
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In the following three examples, the address list to be transmitted to the
subprogram will be identical.

Case 1.
DIMENSION A(4,5,6)

CALL IT(...,A,...)

SUBROUTINE IT(...,X,...)
DIMENSION X(100)

Case 2.
DIMENSION A(4,5,6)

CALL IT(...,A(1,1,1),...)

SUBROUTINE IT(..., X, ...)
DIMENSION X(100)

Case 3.
DIMENSION A(4,5,6)

CALL IT(...,A(1,1,1),...)

SUBROUTINE IT(...,Y,...)
DIMENSION X(100)
THE NAME Y DOES NOT APPEAR IN A
DIMENSION STATEMENT.

0O o0
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The Effect of Parameters on the Generators

When data addresses are transmitted as described, the generators for
statements occurring within subprograms must be cognizant of formal
parameters so as to generate special forms of instructions or special instruc-
tions to take care of the fact that the actual data values are not immediately
available. When the parameters of a statement are formal parameters of the
subprogram, the generator need only replace the address of the variable in
the generated code by an indirect address to the location at which the
address of the parameter is stored. When a variable name does not occur in
the parameter list, the normal process of reserving storage in the object
time data table and referencing that location directly may be followed. Thus
the simple assignment statement

X=A

which appears in a subprogram, and within which is a reference to the
parameter A, will be compiled as

LDA —A
ST X

where A is the address, in the parameter address list, at which the address
of the argument corresponding to the variable A has been stored.

In the case of subscripted parameters, the whole subscripting expression,
rather than only a part of the algorithm, must be evaluated at compile time.
That is, the total expression

N
Address of element = Address (A(1,1,...1)) — % pi (s, —1)
i=1

However, the compiler writer can be assured that if a formal parameter is
defined within the subprogram as an array, there is likely to be more than
one reference to an element of that array within that subprogram. Thus the
compiler writer must evaluate the advantage of requiring the execution of
the algorithm each time a reference is made to an element of that array
compared to the advantage of adding to the subprogram an initialization
section, which would be prompted by the recognition of a parameter name
in a DIMENSION statement and would consist of a set of instructions to
compute the address of the base element in the array. That is, perform the
computation

N
Base Address = Address (A(1,1,...1)) + X p,
i=1

1=
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and store this address in the parameter address list in place of the address
provided by the calling program. After this computation has taken place,
the subscripting algorithm described previously can be incorporated into the
subprogram with the minor change that the base address must be picked
up at object time and cannot be provided as a constant by the compiler.

This simple method for providing the address of an element when the
base address of the array is unknown at compile time may be complicated
when a particular algebraic compiler allows the definition of dynamic arrays
—that is, DIMENSION statements in which the sizes of arrays are defined
by variables instead of the more standard constants. The FORTRAN speci-
fication states that these dimensions may only be formal parameters them-
selves but does not specify whether the values of these parameters may be
altered during the execution of the subprogram. More important than the
source of the value of the dimensioning variable (that is, whether it is a
local variable or a parameter) is whether or not the size can be changed
during the execution of the subprogram. If the size is inviolate once the sub-
program has been entered, then the initialization process may be intro-
duced into a subprogram with only minor changes in the generator. If the
size can be altered, then the location of an element must be computed at
each reference.

Although parameters of a subprogram may only be specified as variables,
the arguments to be used are not so restricted. In particular, each argument
may be considered an expression, the address of the result of the evaluation
of that expression being provided to the subprogram. However, it would be
a waste of execution time, if the values of simple variables or constants
were moved to temporary storage locations before a subprogram were
entered. Further, since variables that are arguments may also be used as
output variables for the subprogram, the resultant values would have to be
moved back to their normal locations after execution of the subprogram.
To facilitate this two-way communieation, it is simpler and more expedient
to provide the actual address of the value of a variable to the subprogram.
It is then the programmer’s responsibility to ensure that any parameter that
is provided for both input and output in a subprogram is provided with a
means of communication in the calling program.

Thus, if an argument is defined as an expression, it may only be used as
an input value since the value of an expression is not stored permanently
and has no place in the object time data table. If the programmer makes an
error, the output value from the subprogram is placed back into the tem-
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porary storage location where the result of the evaluation of the expression
was originally placed and the remaining data are unaffected. However, if
the programmer, by error, uses a constant where the subprogram expects to
find an argument to be used for input and output, the value of the constant
will be altered in the data table. For example, in the following program,
the location in the data table that contains the integer constant 1 will contain
2 after the execution of the subprogram.

CALL ANY(A,1)
SUBROUTINE ANY (X,1)

I=1+1

RETURN

END
Since there are programs where this error would not impede the execution
of the remainder of the program, it is suggested that when a constant
appears in an argument list, the value be transferred to a temporary storage

location so that any change in that value does not affect the rest of the
program.

Often it is necessary for the argument list (and hence the parameter list)
to be considered as unlimited in the number of arguments. For example,
in the case of the MAX function which provides to the calling program the
value of the argument in the list which is greatest, it is desirable for the
number of arguments to be defined at object time. One solution to this
dilemma is to EQUIVALENCE the arguments to elements in an array and then
provide that array to the subprogram as a single argument.

If the function is written in machine language instead of algebraic code,
the programmer can provide the instructions necessary to pick up the argu-
ment addresses. For example, if the compiler is written so that a peculiar
word is added to the argument address list, then the subprogram may pick
up argument addresses until this “stopper” is located. For example, if the
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stopper word is a word containing the address 7777, which is placed in the
argument address list immediately following the return address entry, then
the MAX function ! may be written as the sequence of instructions:

DA
MAX LDA
ST
LDA
ST
LDA
INA
ST
LDA
ST
SuB
BNZ
LDA
B
LDA
SuB

BP

LDA

ST

LDA

ST

B
Cc7777 DA
CONST DA
VAL DA
RET DA
STOP DA

Cascading Calls

0

CONST
VAL
—MAX+1
RET
MAX—1
=1
MAX—1
—MAX+1
STOP
c7771
*+3

VAL

—RET

VAL

—RET

*+3
—RET
VAL
STOP
RET
MAX+4
77717
77777777
0

0

0

Initialize maximum value

Assume entry is return address
Increment address in list

Pick up address
Assume to be stopper
Check for stopper
Jump unequal

Load maximum value
Return

Test argument against last
candidate

Jump if not larger

Store new candidate

Move up last address

Since one subprogram may reference another subprogram ad infinitum,
so long as there is no reference to any one subprogram more than once, the
instructions generated in a subprogram on the recognition of a call to
another subprogram must be handled separately. If the particular computer
being used as a target permits cascading indirect addressing, then argu-

 For an example of the calling routine to this function see p. 219.
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ments within the subprogram that are also parameters may be listed as
indirect addresses. Thus during the operation of this second level sub-
program, any reference to a formal parameter automatically causes the cas-
caded indirect address to be picked up. However, in machines that do not
permit cascading indirect addressing, the instructions must be inserted into
the sequence of object time calling instructions so that the address in the
argument list is always direct. That is, these will be inserted as a two-
instruction sequence that will load the original address into the accumulator
and then store this value in the argument list. Thus, if the source state-
ment is

CALL SUB(A,B,1J)

where B and | are parameters, then the generator must provide the instruc-
tions to chain through one level of indirect addressing to obtain the address
of the original argument and place this address in the argument list. That is,

LDA —B

ST ARGSUB2
LDA —I

ST ARGSUB3
JMS —SUB
DA A

ARGSUB2 DA 0
ARGSUB3 DA 0

DA J
DA (return address)
DA 7777
SuUB DA 0 (Address to be filled in later)

FORTRAN-type compilers do not permit the recursive calling of sub-
programs and thus do not provide the facilities either for a subprogram to
reference itself directly or for a second level subprogram to reference back
to its calling program. This feature is standard for ALGOL-type languages
and thus special facilities must be provided by the compiler for this purpose.
In particular, the address lists must be placed into a push down list so that
as the subprogram is referenced repeatedly, the list of addresses of the
arguments are saved. Further, as a pass through the subprogram is com-
pleted, the list must pop up the last set of argument addresses. In addition,
no instructions or permanent addresses in the subprogram may be altered
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during the execution of the subprogram, and any intermediate results must
be placed in a push down list. However, the organization of this system
requires that the push down list storage areas be reserved in advance, irre-
spective of the actual use and extent of recursion.

Function Names as Arguments

When a function name is used as an argument in the calling statement
of a subprogram, the entry address of the function is to be regarded as the
value of the argument and, provided that this address is stored in the object
time data table, the organization of the argument address list is unaffected.
However, the calling program must have the ability to recognize this form
of argument, particularly since the usual determination technique is un-
workable in this instance. That is, in general, a function reference is recog-
nized syntactically as being one of two possible accretions, either a sub-
scripted variable or a function reference. However, the information stored
in the symbol table enables the compiler to recognize the subscripted varia-
ble since that name will have been previously defined in a DIMENSION
statement. By default, an accretion that takes the form of a subscripted
variable but has not been defined in a DIMENSION statement is assumed to
be a function reference. However, when a function name is used as an
argument, no argument list is appended, and, in fact, if one were it would
be assumed that the value of the function was to be used as the argument
value. Thus, with no previous definition, a function name used as an argu-
ment is syntactically identical to a variable name. Consequently, FORTRAN
requires the definition of function names that are to be used in this manner.
This is achieved by means of the EXTERNAL statement.

It is worth pointing out that many programmers are confused by the
keyword EXTERNAL. By connotation, it would seem that this statement de-
fines those functions that are external to the program, that is, those func-
tions that are to be referenced by that program. This is the opposite to
what is intended. Perhaps the solution to this pragmatic error would be to
invent the keywords TYPE FUNCTION.

In the subprogram, a reference to a function is recognized in the normal
fashion except when it is used as an argument; then the language requires
the presence of an EXTERNAL statement within the subprogram. In an actual
subprogram call, the address of the function referenced may be picked up
from the argument address list instead of providing a special data table entry
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for the storage of the address of the entry point to the subprogram. Thus
the following statement, which references a subprogram that is named as a
parameter, would compile:

CALL DUMMY (1,J) JMS  —DUMMY

DA I

DA J

DA (Return Address)
DA 7777

where the mnemonic address DUMMY is that address in which the address of
the parameter function is stored.

When a function reference that is also a parameter is used in an argu-
ment list, the appropriate indirect chaining must be accomplished by object
time instructions in the same manner as with transferring parameters that
are variables.

Temporary Storage

Temporary storage locations are needed in subprograms in the same
manner as in main-line programs, but the choice of locations is com-
plicated by the fact that a function subprogram may be called from within
an arithmetic statement that is also utilizing storage temporarily. It would
seem possible, at first glance, to utilize those storage locations that are not
being used in that calling statement, but this would involve the use of
different storage locations by the subprogram each time it was used. Since
this is inconvenient and time consuming, a separate set of storage locations
that do not overlap with those used by the calling program or any other
subprogram must be provided for each function subprogram.

Subroutine subprograms are not restricted in their use of temporary
storage locations since a subroutine subprogram is called by a unique
statement. In the calling statement, the only use of temporary storage loca-
tions when the subprogram is entered will be to store the results of argu-
ments that are expressions. Even though these expressions may require
temporary storage for their evaluation, the compiler can arrange to have
the storage locations used for this purpose chosen from the set remaining
after locations have been reserved for possible storage of the evaluated
arguments. Thus a subroutine subprogram may utilize the remaining set of
temporary storage locations after this reservation for evaluated arguments,
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this number being determined at compile time from the subprogram de-
fining statement.

Temporary storage is also required in a function subprogram for use
with the function name being used as a variable. That is, by definition of
a function subprogram, there must be one statement within the subprogram
that assigns a value to a location which is given the same name as the func-
tion. This means that in a function subprogram, the compiler must be
capable of recognizing the name of the function in this context and re-
serving storage for this variable. Further, since the result of evaluating a
function is not stored in a location in the object time data table and thus
is not directly available to the programmer, but rather is to be made avail-
able to the calling statement as a value for further manipulation, this value
must be placed into the accumulator when a RETURN statement is executed.
Thus the generator for a RETURN statement does not simply produce a
branch indirectly to the address of the next instruction to be executed, but
must add, in the case of a function subprogram, a load instruction to
extract the result from the location chosen for the storage of the values of
the variable that carries the same name as the function. For this purpose,
the generator for the defining statement of a function subprogram must
reserve storage under the name of the function, but the name is to be
utilized as a simple variable of the same mode as the function. However,
this generator must not define the variable as carrying a value under the
normal rules of defining a variable.

Summary

The special productions necessary for compilation within a subprogram
result from the techniques of linking the calling program with the sub-
program and the methods of providing the arguments to the subprogram.
The linkages between the different types of subprogram should be con-
sistent so as to minimize variances within the compiler. For example, since
it is known (by definition of the language) that function subprogram
arguments are all input values, it would be possible to provide only the
actual values of those arguments as input to the subprogram. However,
with the subroutine subprogram, the compiler cannot determine, when the
calling statement is being compiled, which arguments are to be used as
input parameters and which are to be used for storing results. Thus the
linkage mechanism for a subroutine subprogram requires the more general
technique which for ease of compilation is used for all subprograms inde-
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pendent of their type or origin. Although in any one situation, a compile
writer can show that a peculiar form of linkage is more efficient, the genera
technique will ease the task of the compiler and thus the programmer

There are many ways of implementing a compiler, several of which wil
depend for their utility, on the external environment of the system, and or
the fancies of the originator.
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The Logical Flow of the IBM 1401 Processor’

Phase 01—System Monitor

Note: This phase is resident in the computer memory throughout the compila-
tion. When any other phase has completed its task, control is transferred back
to the monitor.

1. Brings in next phase from the current input unit.
2. Ensures that between phases, no extraneous material is left which would
jeopardize the execution of the incoming phase.

Phase 02—Loader

1. Stores the information on the control card that precedes each source deck.

2. Checks the storage information on the control card against the available
memory unless the program is not to be compiled for execution on this machine.

3. Reads in the source program and stores it in memory, appending to each
statement a three-character position for a sequence number and a one-character
position for a statement type code.

4. Deblanks the statements except in the Hollerith fields of FORMAT state- -
ments.

5. Collects continued statements and checks for an overabundance of the
same.

6. Checks for special input statement characters and converts any, if found,
to special internal codes.

7. Places special delimiters around each statement. (Because of deblanking,
the statements are not of equal length.)

8. Generates a STOP statement after the last statement.

tL. H. Haines, “Serial Compilation and the 1401 FORTRAN Compiler,” IBM
Systems Journal, Vol. 4, No. 1, 1965, Form No. 321-0002. Reprinted and edited by
permission from IBM Systems Journal ©® 1965, by International Business Machines
Corporation.
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Phase 03—Scanner

1. Determines the statement type of each statement and inserts the appropri-
ate code in the appendage to the statement.
2. Numbers each statement in sequence.

Phase 04—Sort |

Tests available memory to determine whether each statement can be ex-
panded by three characters. If this is not possible, the compilation is terminated
after a message is output, indicating that the object program is too large.

Phase 05—Sort Ii

By expanding each statement by three characters, statements of the same type
are linked so that each statement has the address of the next statement of the
same type appended to it.

Phase 06—Sort il

The source program is sorted by statement type and shifted to low storage.

Phase 07—Insert Group Mark

The delimiter that separates the statement from its appendage is replaced by
a group mark.

Phase 08—Squoze

1. Keywords are eliminated from the source statements, and the statements
are squeezed to expand the available storage.

2. Statements with invalid keywords are eliminated from the program and
appropriate error messages printed.

Phase 09—Dimension |

1. A table containing the names of variables mentioned in the chain of
DIMENSION statements is constructed in high memory.

2. Each table element contains: (a) the array name, (b) the number of
dimensions, (c) the size of each dimension, and (d) a space for control char-
acters and data to be generated in the EQUIVALENCE phases and the second
DIMENSION phase.

Phase 10—Equivalence |

1. Checks all arrays mentioned in EQUIVALENCE statemerits to ensure that
they have occurred in DIMENSION declarations.
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2. Adds simple variables that occur in EQUIVALENCE statements to the table
of arrays generated in phase 09. These variables are inserted into the table as if
they were single element arrays.

Phase 11—Equivalence i

Computes the offsets of equivalenced arrays and notes the relationships be-
tween arrays (that is, implicit equivalencing as a result of the mentioning of a
single array in more than one EQUIVALENCE group).

Phase 12—Dimension Phase i

Arrays are assigned object time addresses.

Phase 13—Variables |

1. The source statements are scanned for variable names.

2. Simple variables are tagged for processing in phase 16.

3. Subscripted variables with constant subscripts are replaced by object time
addresses.

4. Subscripted variables with variable subscripts are replaced by the com-
putation required at object time to compute the location of that element.

5. Array names appearing in lists are replaced by two memory addresses
denoting the limits of the array when no subscripts are appended to the name.

6. Array names appearing without subscripts in other places are replaced
by the address of the first element of the array.

Phase 14—Variables Ii

The entire source program is moved to high memory, leaving room for sub-
sequent phases. The remaining storage is then cleared for tables including that
generated in phase 12.

Phase 15—Variables Il

This is not a self-sufficient phase, but is resident during phases 16 and 17.
Phase 15 is a housekeeping routine.

Phase 16—Variables IV

1. The compiler scans input statements and the left-hand side of assignment
statements for simple variables. Each unique variable is assigned an object time
address.

5. All variables in statements are checked against the object time address
table, and when a match is found, the object time address is substituted for the
variable name. When a match is not found, it is assumed that the variable is
undefined.
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Phase 17—Variables V

A check is made for unused variables,

Phase 18—Constants |

Constants in the source program are extracted and converted to internal mode
with truncation if necessary.

Phase 19—Constants Il

This phase is the same as phase 14. The table of simple variables is destroyed.

Phase 20—Constants 111

The constants are assigned object time addresses at the low end of memory.
The constants are then placed in these locations and are replaced in the source
program by the addresses.

Phase 21—Subscripts

Subscripts that require object time computation (that is, consist of expres-
sions) are reduced to a set of parameters.

Phase 22—Statement Numbers |

All statement numbers appearing in the source program are converted to a
unique three-character code.

Phase 23—Format I 7

All input/output statements are checked against the FORMAT statements to
ensure that all the FORMAT statements are necessary. Unreferenced FORMAT
statements are discarded.

Phase 24—Format I 1

The object time FORMAT strings are developed and stored in the low end of
memory.

Phase 25—Lists |

Lists are compared to eliminate duplicates and thus to optimize object time
storage.

T The authors of this system named phases 23 and 24, Tamrof I and II.
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Phase 26—Lists Il

The object time lists of addresses and instructions (to compute array element
locations) are developed and stored at the low end of memory.

Phase 27—Lists 1l

Each input/output statement is reduced to the address of the first item in the
list string (if present), the address of the FORMAT string, and the logical unit
number.

Phase 28—Statement Numbers I

This phase is the same as phase 14.

Phase 29—Statement Numbers il

The three character codes of statement numbers appearing within statements
are stored in a table.

Phase 30—Statement Numbers IV

The statement numbers appearing as identifiers in statements are checked
against the table of statement numbers generated in phase 29. When a match is
found, the sequence number generated in phase 03 is placed in the table. Un-
defined and multiply defined statement numbers are also checked.

Phase 31—Statement Numbers V

Unreferenced statement numbers are noted.

Phase 32—Input/Output |

The linkage to the object time FORMAT routine is inserted in each input/output
statement prior to the data generated in phase 27.

Phase 33—Arithmetic |
This phase is a resident housekeeping phase for phases 34-38:

1. The unary minus and exponential operators are converted to unique one-
character symbols. The unary plus is discarded.
2. Error checking takes place.
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Phase 34—Arithmetic Il

1. All arithmetic and arithmetic IF statements are coded by a forcing tabls
technique (see page 192).
2. Error checking continues.

Phase 35—Arithmetic 111

Initialization for phase 36 occurs.

Phase 36—Arithmetic IV

The data generated in phase 35 are scanned to optimize the number of tem-
porary accumulators needed for each statement.

Phase 37—Arithmetic V

1. IF statement tests and exits are coded.
2. Involution routine linkages are coded.

Phase 38—Arithmetic Vi

The optimization of temporary accumulators started in phase 36 is completed,
and object time storage locations are assigned.

Phase 39—Input/Output 1l

Instructions for executing tape-manipulation commands are created, that is,
ENDFILE, REWIND and BACKSPACE.

Phase 40—Computed GO TO

Computed GO TO statements with two to ten exits are coded by the use of
in-line instructions. For statements with more than ten alternate exits, linkage
to a system subroutine is generated.

Phase 41-GO TO

Unconditional GO TO statements in the source program are replaced by in-line
branch statements.

Phase 42—STOP /PAUSE

The object time instructions to halt (for STOP) or halt and continue (for
PAUSE) are generated together with the instructions necessary to display the
indication number.

242



THE LOGICAL FLOW OF THE IBM 1401 PROCESSOR

Phase 43—SENSE LIGHT

In-line instructions are generated to execute the sense light operations.

Phase 44—Hardware [F

The instructions to test and branch on IF(SENSE SWITCH i) or IF(SENSE LIGHT i)
are generated in line.

Phase 45—CONTINUE

This phase merely collects data for later phases. It does not generate any
instructions.

Phase 46—DO

1. The DO statements are replaced by: (a) an unconditional branch and
(b) a set of parameters describing the elements of the DO statement.

2. An unconditional branch is prepared which will be inserted after the last
statement within the range of the DO.

Phase 47—Resort |

Initializations for phase 48 are executed.

Phase 48—Resort li

A special table (the resort table) is filled with the current location of each
statement in memory.

Phase 49—Resort lif

The source statements are sorted back into their original order, that is, the
order before the execution of phase 06. The statement number table is updated
to show the current address of each statement.

Phase 50—Resort IV

The statements are relocated to occupy the places in memory that they occupy
at execution time. The statement number table is adjusted to show these ad-
dresses.

Phase 51—Replace |

1. Object time instructions that contain references to statement numbers
(which presently appear as code characters rather than as actual addresses) are
corrected to reflect the object time addresses of the referenced statements.

2. Subscript strings are cleaned up.
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Phase 52—Function/Subroutine Loader

1. The relocatable functions and subroutines called in the source program are
loaded into memory.
2. A table of the starting addresses of these routines is prepared.

Phase 53—Relocatables

This is not truly a phase of the compiler since it takes no part in the trans-
lation of the source program. This phase (maybe better called a package) con-
sists of the routines that are loaded by phase 52.

Phase 54—FORMAT routine loader
This routine loads the object time FORMAT routine.

Phase 55—Replace i

The instructions that were generated in phase 34 and that reference system
routines are corrected to reflect the object time location of these routines after
being loaded by phase 52.

Phase 56—Snapshot

If requested on the control card (see phase 02) a snapshot of the generated
object program is printed provided that no source program errors have been
recognized that would create a “NO GO’ situation.

Phase 57—Condensed Deck |

If requested, and provided an “O.K.” program has been produced, a con-
densed object program will be punched. This phase punches only the clear stor-
age and bootstrap cards.

Phase 58—Condensed Deck II
This phase duplicates phase 59 into the object deck.

Phase 59—Fixed Routines

This package, which is duplicated into the object deck by phase 58, consists
of: (a) the arithmetic routines, (b) initialization routines that set up the index
registers and sense lights, and (c) the snapshot routine for use in debugging at
object time.
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Phase 60—Condensed Deck lil

The generated object time instructions and data are punched together with
the FORMAT routine, which was loaded at phase 54. Only the actual used storage
is punched.

Phase 61—Geaux |

This phase prints the end-of-compilation messages.

Phase 62—Geaux i

The arithmetic routine is read into storage, and communication between this
package and the relocatable routines is established. Note that the arithmetic
routines were not loaded at phase 58 since there was insufficient space to contain
both phase 01 (the monitor) and phase 58 while the arithmetic routine was

loaded. This phase destroys the monitor.

Phase 63—Arithmetic Package

This package consists of the fixed arithmetic routines which are to be loaded
by phase 62. In fact, this package is a duplicate of phase 59.

After the monitor is destroyed in phase 62, the control is transferred to the
existing program which is now ready for execution. However, even though this
is a load and go compiler, an object deck has been produced for subsequent
executions.
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FORMAC—The Formula Manipulation Compiler

This appendix takes the form of a FORMAC program in which the comments

(that is, the lines that contain a C in the first column as in FORTRAN) describe
the action or meaning of the statements. Since FORMAC is a parasite on
FORTRAN, any normal FORTRAN statements will have no explanation. The
second part of the appendix shows the output from this program.

C
C

00

sl eNeNe)

000N

eNeNeNeNe!
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A PROGRAM TO DEMONSTRATE THE CAPABILITIES OF FORMAC

SYMARG
SYMARG FLAGS THE START OF THE FORMAC PROGRAM IN .THE SAME
MANNER AS PROGRAM IN A FORTRAN PROGRAM

ATOMIC U, V, W, X, Y, Z, P, T, AORB, ALPHA, BETA, THORC
AN ATOMIC STATEMENT DECLARES THAT THE VARIABLES THAT APPEAR
IN ITS LIST REPRESENT THEMSELVES AND NOT VALUES AS IN FORTRAN.
THAT IS, THESE ARE THE VARIABLES OF FORMAC THAT WILL APPEAR
IN EXPRESSIONS OR FORMULAS THAT ARE TO BE MANIPULATED.

DEPEND (U, V, W, Y, Z/X)

SINCE FORMAC HAS THE ABILITY TO DIFFERENTIATE IT 1S NECESSARY
TO DESCRIBE THE DEPENDENCY OF THE ATOMIC VARIABLES. IN THE
ABOVE STATEMENT U, V, W, Y AND Z ARE SAID TO DEPEND ON X.

DIMENSION CARD(12), LINE(12)

LET POLY1=P#%5 + 15%P**4 + 105%P**3 + 420%P**2 + 945%P - 945
THE LET STATEMENT CAUSES THE VARIABLE NAME ON THE LEFT OF THE
EQUAL SIGN TO BE ASSIGNED TO THE EXPRESSION ON THE RIGHT.

AS OPPOSED TO A FORTRAN ASSIGNMENT STATEMENT, A LET STATEMENT
MERELY ASSIGNS A NAME TO AN EXPRESSION AND DOES NOT INFER
ANY COMPUTATIONS.

LET POLY2=P#*7 + 28%Px%6 + 378#Px+5 + 3150%P**4 + 17325%Px«3

1+ 62370%P+%2 4 135135%P 4 135135
MULTIPLY THESE TWO EXPRESSIONS

LET POLY = EXPAND POLY1 * POLY2
THE EXPAND KEYWORD WILL DEPARENTHESIZE THE RESULTING EXPRESSION
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AND COLLECT THE COEFFICIENTS OF THE POWERS OF THE VARIABLE P
LET POLY = ORDER POLY, DEC, FUL
THE KEYWORD ORDER WILL CAUSE THE EXPRESSION TO BE SEQUENCED.
BY VIRTUE OF THE WORD DEC, THE SEQUENCING WILL BE IN DECREASING
POWERS OF THE VARIABLE.
THE NEXT FOUR STATEMENTS ARE A STANDARD SET TO OUTPUT AN
EXPRESSION WHICH HAS BEEN STORED UNDER THE NAME OF A VARIABLE.
BEGIN = 0.0
10 LET BEGIN = BCDCON POLY, LINE, 12
BCDCON IMPLIES CONVERSION FROM FORMAC INTERNAL REPRESENTATION
TO BCD FOR OUTPUT. THE RESULT OF THE CONVERSION IS STORED
BOTH IN BEGIN AND LINE EXCEPT THAT LINE IS FILLED WITH DIFFERING
PORTIONS OF POLY DURING EACH PASS THROUGH THE LOOP.
WRITE(6,920)(LINE(J), J=2,12)
IF(BEGIN.NE.0.0)GO TO 10
DIFFERENTIATE THE RESULTANT PRODUCT
LET DERIV = FMCDIF(POLY, P, 1)
FMCDIF IS THE FORMAC DIFFERENTIATION ROUTINE
THE PARENTHESIS CONTAINS THE NAME OF THE EXPRESSION TO BE
DIFFERENTIATED, THE VARIABLE OF DIFFERENTIATION AND THE ORDER
TO WHICH DIFFERENTIATION IS TO BE CONTINUED. THAT IS, IN THE
ABOVE STATEMENT, POLY IS TO BE DIFFERENTIATED ONCE WITH
RESPECT TO THE ATOMIC VARIABLE P
LET DERIV = ORDER DERIV, DEC, FUL
20 LET BEGIN = BCDCON DERIV, LINE, 12
WRITE(6,920)(LINE(J), J=2,12)
IF(BEGIN.NE.0.0)GO to 20
EVALUATE THE RESULTANT POLYNOMIAL FOR P = —3.6
LET VAL = EVAL POLY, (P, —3.6)
THE EVAL VERB DEFINES THE EVALUATION OF THE EXPRESSION
USING THE NUMERICAL VALUES OF THE ATOMIC VARIABLES
LISTED IN THE PARENTHESES.
THE RESULT OF THIS OPERATION PLACES A NORMAL FORTRAN NUMBER
IN THE VARIABLE VAL. THUS THE RESULT MAY BE OUTPUT WITHOUT
ANY SPECIAL INSTRUCTIONS.
WRITE(6,950) VAL
EVALUATE THE POLYNOMIAL FOR P = —3.7
LET VAL = EVAL POLY, (P, —3.7)
WRITE(6,950) VAL
FIND THE 4TH DERIVATIVE OF THE INTEGRAND IN THE INTEGRAL
FORMULATION OF THE BESSEL FUNCTION J1(X)
LET FOURTH = EXPAND FMCDIFFMCCOS(T — X*FMCSIN(T)), T, 4)
TO PREVENT ANY CONFUSION BETWEEN THE SINE FUNCTION OF FORTRAN
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C AND THAT OF FORMAC, THE LATTER IS GIVEN THE DISTINCT NAME
C OF FMCSIN. SIMILARLY FOR ALL OTHER FUNCTIONS.
C PRINT THE DERIVATIVE FUNCTION.
LET FOURTH = ORDER FOURTH, INC, FUL
C THIS EXPRESSION IS TO BE ORDERED IN INCREASING POWERS
BEGIN = 0.0
45 LET BEGIN = BCDCON FOURTH, LINE, 12
WRITE(6,920)(LINE(J), J=2,12)
IF(BEGIN.NE.0.0) GO TO 45
C READ EXPRESSIONS FROM CARDS AND DIFFERENTIATE THEM
41 READ(5,900)CARD
BEGIN = 0.0
LET EXPR = ALGCON CARD, BEGIN
C ALGCON CONVERTS FROM BCD TO FORMAC INTERNAL MODE
LET ANS = EXPAND FMCDIF(EXPR, X, 1)
LET ANS = ORDER ANS, INC, FUL
WRITE(6,910)
BEGIN = 0.0
50 LET BEGIN = BCDCON EXPR, LINE, 12
WRITE(6,920)(LINE(J), J=2,12)
IF(BEGIN.NE.0.0) GO TO 50
WRITE(6,930) :
60 LET BEGIN = BCDCON ANS, LINE, 12
IF(BEGIN.NE.0.0) GO TO 60
ERASE ANS
C THE ERASE VERB ELIMINATES UNWANTED EXPRESSIONS FROM STORAGE
C AND THEREFORE CONSERVES MEMORY.
GO TO 41
900 FORMAT(12A6)
910 FORMAT(//1H ,25HTHE EXPRESSION READ IS ... //)
920 FORMAT(5X, 12A6)
930 FORMAT(//1H ,53HTHE DIFFERENTIATION PERFORMED BY FORMAC
RESULTS 1IN... //)
END

The remainder of this appendix contains the results of executing the above
FORMAC program. No input data were needed for the first portion of the pro-
gram and that for the second part is reflected in the output.

Results

2.5540515E8%P4-P*%12.0+43.0%P+*11.04-903.0%P*%10.0+12180.0%P**9.0+
116970.0%P**8.04+-839160.0%P**7.04+-4596480.0%P**6.0--19321470.0%P**5.0
+61760475.0%Px4.041.4625765E8+P ++3.0+2.43398927E8+P+ 2.0+

248



FORMAC—THE FORMULA MANIPULATION COMPILER

127702575.04 (Note: the $ sign signifies the end of an expression)
4.86797843E8*P+12.0*P**11.0+473.0*P**10.0+9030.0*P**9.0+109620.0*P
*%8.04+935760.0+P #%7.0-45874120.0%P *%6.0-+27578880.0%P 5.0+
96607350.0*P**4.0+2.470419E8*P**3.0+4.38772943E8*P**2.0-1—
2.554051E8$
4.9110000€ 03
—5.0090000E 03
7.0%X*FMCSIN(T) *FMCSIN(T—X+*FMCSIN(T) ) —8.0*X*FMCCOS(T) *FMCCOS
(T—X*FMCSIN(T) )—12.0%xX*%2.0 *FMCSIN(T) *FMCSIN(T—X*FMCSIN(T) ) *
FMCCOS(T)—3.0*X**2.0*FMCSIN(T)**2.0*FMCCOS(T—X*FMCSIN(T))+10.0
*X**Z.O*FMCCOS(T)**2.0*FMCCOS(T—X*FMCSIN(T))+6.0*X**3.0*FMCSIN
(T) *EMCSIN(T—X*FMCSIN(T)) *FMCCOS(T) *%2.0—4.0%X*+3.0xFMCCOS(T)
*%3.0*FMCCOS(T—X*FMCSIN(T) )+X**4.0*FMCCOS(T) *x4.0xFMCCOS(T—Xx*
FMCSIN(T) )+FMCCOS(T—X*FMCSIN(T) )$
THE EXPRESSION READ IS...
X#2.0%21.0+X**3.0+FMCSIN(X **2.0)+FMCCOS(X)$
THE DIFFERENTIATION PERFORMED BY FORMAC RESULTS IN...
2.0*X*FMCCOS(X**2.0)—|—42.0*X+3.0*X**2.0—FMCSIN(X)$
THE EXPRESSION READ IS...
(VEAAS
THE DIFFERENTIATION PERFORMED BY FORMAC RESULTS IN...
U*FMCDIF(V,(X,1)) +V*FMCDIF(U,(X,1)) $
THE EXPRESSION READ IS...
AORB*FMCSIN(BETA*X—I—THORC) *FMCEXP (—ALPHA*X) $
THE DIFFERENTIATION PERFORMED BY FORMAC RESULTS IN...
—ALPHA*AORB*FMCSIN(BETA*X+THORC) *FMCEXP(-—ALPHA*X) +AORB*
BETA*FMCCOS(BETA*X—I—THORC) *FMCEXP (—ALPHA*X) $

The above program and results were provided to the author by D. D.
McCracken, for which the author is extremely grateful. However, the reader
should verify the results.

Further details of FORMAC may be obtained from the following publications:
“FORMAC” (Operating and User’s Preliminary Reference Manual), IBM

Program Information Dept., Hawthorne, N. Y., Form No. 7090 R21BM 0016,

Aug. 1965.

Sammet, J. E., and E. R. Bond, “Introduction to FORMAC.” IEEE Trans. on

Elect. Comp., Vol. EC-13, No. 4, Aug. 1964.
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A Formal Definition of Dartmouth Basic’

<alphabetic character> := A]BIC[D]E[F{G}H]l[J{K]L[MIN[O[P]Q]RlS]T[U]V[WIX]Y[Z
<digir> := 0|1]2|3/4|5/6/7/8|9
<special character> :—= F=*/bl=[() [>]<].L]; It
<integer> := { <digit>}?
<fraction> := .<integer>
<decimal number> := {<digit>}1=°, {<digit>})5—
Note: A decimal number could not be defined as
<decimal number> := <integer>.<integer>
since (a) no more than nine digits are permitted in a number, whereas the above
construct would allow a maximum of 18 and (b) since an <integer> must
contain at least one digit, the form {<digit>}. cannot be generated.
<sign> := <null>|—|4
<exponent> := E<sign>{ <digit>} %
<number> :={<integer>|<fraction>>|<decimal number>} 1
{<exponent>} 1
<signed number> := <sign><number>
<simple variable> := <alphabetic character> { <digit>}(1,
<subscripted variable> :=
<alphabetic character> (<expression> {,<expression> W)
<variable> := <simple variable>|<subscripted variable>
<function name> := SIN|COS|TAN|ATN|EXP| ABS|LOG|SQR|INT/RND|
FN<alphabetic character>
<function term> := <function name> (<expression>)
<term> := <number>|<variable>>|<function term>|(<expression>)
<involution factor> := <term> |<involution factor>t<term>
<multiply factor> := <involution factor>|
<multiply factor>{x|/}1<involution factor>
<expression> := <multiply factor>|<sign> <expression> |
<expression>{+|— H<multiply factor>

T"‘BASIC” (A Manual for BASIC, the elementary algebraic language designed for
use with the Dartmouth Time-Sharing System), Dartmouth College, Jan. 1, 1965.
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<assignment statement> 1= LET<variable>=<expression>

<read list> := <variable>{,<variable>}°§

<READ statement> := READ<read list>

<number list> 1= <signed number>{,<signed number>}°0°

<DATA statement> := DATA<number list>

<message> := “{<alphabetic character>|<digit>|<special character>}7"

<print item> 1= <expression> |<message> |<message> <expression>

<print list> := <null>|<print item>{,<print item> SO

< PRINT statement> := PRINT<print list>

<line no 1> := {<digit>}3

< GO TO statement> := GO{b}TO<line no 1>

<comment> := REM{<alphabet character>|<digit>|<special character>Yy

<relation op> = >:|>|<>‘<|<:|:

<IF statement> = |[F<expression><relation op><expression>THEN

<line no 1>

<FOR statement™> := FOR<simple variable>=<expression>TO<expression>
{STEP<expression>}§

<NEXT statement> := NEXT<simple variable>

<END statement> := END

<size> 1= <integer>{,<integer>}})

<dimension variable> 1= <alphabetic character> (<size>)

< DIMension statement> = DIM<dimension variable>

{,<dimension variable>}',
< DEFine statement> .= DEFbFN<alphabetic character> (<simple variable>)
=<expression>

<GOSUB statement> := GOSUB<line no 1>

<RETURN statement> := RETURN

<statement body> = <assignment statement>|<READ statement>> |
<DATA statement>>|<PRINT statement>|
<GO TO statement>|<IF statement>|
<FOR statement>|<NEXT statement>|
<DIMension statement>|<DEFine statement>|
<GOSUB statement>|<RETURN statement>|
<comment>

<line number> := {<digit>}'°1’b i

<BASIC statement> := <line number><statement body>

<BASIC program> := {<BASIC statement>}";

<line number><END statement>
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Solutions to Selected Problems

Chapter 2
Problem 2.1

Define:
<odd digit> := 1|3|5|7|9
<even digit> := 0|2|4/|6/8
<digit> := <odd digit>|<even digit>
Then we may define:
<even integer> := {<digit>}7 <even digit>
<odd integer> : = {<digit>};°<odd digit>
Problem 2.3
<sub exp> 1= {<e>*}v>{{+H] <> | <>

Problem 2.5

<sterling constant> := <pounds field> /<shillings field>/<pence field>L
<pounds field> := {<digit>}7

<shillings field> := 1<digit>|1|2]3]4|5|6]7|8|9|—

<pence field> := 1{0[1} 12|3]4|5|6|7|8|9|—

Chapter 3
Problem 3.1(a)

T T
e

The string is valid.
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Problem 3.1(e)
N A

The string is invalid.

Problem 3.2(c)

The string is valid.
Problem 3.2(d)

The string is invalid.

(O]

>

®

<

g——a

0O
N

®

~<

SOLUTIONS TO SELECTED PROBLEMS

N

®

<
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Problem 3.4(c)

F - G
v v
t t
if if
mf mf
e

254

mf




SOLUTIONS TO SELECTED PROBLEMS

Chapter 4

Problem 4.1(a)
110110, = 544,

Problem 4.1(c)
011011, = 274

Problem 4.2(a)

93,, is input into two words as 001001 and 000011. Multiplying out the
polynomial: :

Word 1: 001001
1010X%
001011010
Word 2: 000011+
Ans: 001011101

Problem 4.2(c)
256, is input into three words as 000010, 000101 and 000110.

Word 1: 000010
1010X

000010100
Word 2: 000101+

000011001
1010x

000011111010
Word 3: 000110+

Ans: 000100000000

Problem 4.3(a)
Convert mantissa to an integer to ease the conversion:

800.46 X 1020 = 80046. X 1018
Now 1018 — 218l0g,10 — 259.8
Then 80046. X 1018 = 80046. X 208 X 259
From which we may calculate (to four figure accuracy)

80046. X 208 = 139280.
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Converting the mantissa to binary:
139280,, = 1000100000000100001,
Normalizing this mantissa and truncating to five significant digits:
0.10001 x 218

The original exponent of 2 must now be increased by the amount of the shift
(which is 18), hence:

800.46 X 1020 =0.10001, X 277
Finally, converting the exponent to binary mode:
800.46 X 102° = 0.10001, X 21001101,

Problem 4.4

PROGRAM CATCH
DIMENSION NAME(20),IN(80)
23 READ(60,100)IN
100 FORMAT(80R1)
IF(EOF,60)20,21
20 STOP
21 1=1$)J=1
WRITE(61,104)IN
104 FORMAT(//1X,80R1)
C FIND FIRST ALPHABETIC CHARACTER
5 IF(IN(J).I.T.21B.OR.IN(J).GT.7IB.OR.IN(J).EQ.6OB.OR.IN(J).EQ.54B.0R
l.IN(J).EQ.33B.OR.IN(J).EQ.34B.OR.IN(J).EQ.4OB)GO TO 2
CALL EXTRACT(J,IN,NAME(I))
I=I41
2 J=J+1
IF(J.LE.80)GO TO 5
I=1—-1
WRITE(él,I02)(NAME(K),K:],l)
102 FORMAT(1X,A8)
GO TO 23
END
SUBROUTINE EXTRACT(J,IN,NAME)
DIMENSION IN(80),ISAVE(9)
DO 6 K=2,9
6 ISAVE(K)=1H
ISAVE(1)=IN(J)
DO 3 K=2,9
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103

101

ABC
XYZ

OIQ™MTmMOUUN®>

moOw>

SOLUTIONS TO SELECTED PROBLEMS

STRIP OFF ALPHANUMERIC CHARACTERS

J=J+1

IF(IN(J).GT.71B.OR.(IN({J).GT.11B.AND.IN(J).LT.21 B).OR.IN(J).EQ.éOB
1.0R.IN(J).EQ.54B.OR.IN(J).EQ.61B.OR.IN(J).EQ.33B.OR.IN(J).EQ.34B.
20R.IN(J).EQ.40B)GO TO 4

ISAVE(K)=IN(J)

CONTINUE

WRITE(61,103)ISAVE

FORMAT(* NAME TOO LONG *,9RI1,*.. .*)
NAME=8H** % %% % %%

RETURN

AT THIS POINT ISAVE CONTAINS THE NAME
ENCODE(8,101,NAME)(ISAVE(K),K=1,8)

FORMAT(8R1)

RETURNS$END

RESULTS:
ABC=5.000*XYZ

A=B+C+D*D/E—F/(G(H+0))

ABCDE=123

ABCDEFGHIJK=ABC--DEF
NAME TOO LONG ABCDEFGHI . .

*hkkkkkkk

JK
ABC
DEF
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Chapter 7
Problem 7.1(b)
x=((ctd)/e) + (a*b)
Problem 7.2(b)
ab—c—d/e/

Problem 7.3(b)
The initial string is
(_ab + C) —(d—e)

which converts to the reverse polish string:

a~bxc+de—~1
Using rule 7:

abx~c+de—~1
rule 6:

cab*—de—~1
rule 6:

cabx—ed—1

Converting back to the usual notational form:

(C — ab) (e—ad)

Problem 7.6

PROGRAM PAREN
DIMENSION  INB{66),0PAND(100),OPER(100),LPC(100),RPC(100),OPERH(99)
TYPE INTEGER OPAND,OPER,PPC,OPERH, TWOOP,HIER,RSUM
1 READ 100,INB

100 FORMAT(6X,66R1)
IF(EOF,60)999,998

998 DO 50 I=1,100

50 LPC()=RPC(l)=0

PRINT 200,INB
200 FORMAT(/10(8H———————— \.///7X,66R1///)
N=0
DO 2 1=1,66
IF(INB(1).EQ.60B)GO TO 2
N=N-+1
INB(N)=INB(l)
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18
19

12

13

14

15

20

600

CONTINUE

N1=1
N2=TWOOP=HIER=0
DO 20 I=1,N
L=INB(l)
IF(L.EQ.1R+)3,4
IF[TWOOP.NE.0)20,18
M=2

NI1=N1+1
TWOOP=1
OPER(N1)=L
OPERH(N1)=M+HIER
GO TO 20
IF(L.NE.IR—)GO TO 8
IF(TWOOP.EQ.0)18,6
N2=N2-+1
OPAND(N2)=0

GO TO 18
IF(L.NE.1R=)GO TO 5
M=1

GO TO 19
IF(L.NE.]R*.AND.L.NE.]R/)GO TO 12
M=3

GO TO 19
IF(L.NE.1R$)GO TO 13
M=4

GO TO 19
IF(L.NE.1R( )JGO TO 14
HIER=HIER4-5
TWOOP=1

GO TO 20
IF(L.NE.TR))GO TO 15
HIER=HIER—5
TWOOP=0

GO TO 20
N2=N2+1
OPAND(N2)=L
TWOOP=0
CONTINUE
IF(HIER.EQ.0)GO TO 601
PRINT 600

SOLUTIONS TO SELECTED PROBLEMS

FORMAT(* +4-4-4-++++ UNMATCHED PARENTHESES +4+++++)

GO TO 1
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601 OPER=I1R
OPERH(1)=0
NI=N1+1
OPER(NT)=1R
OPERH(NT)=0
1=0
NPREV=—1
30 I=I+1
IFLGE.(N141))GO TO 42
IF(OPERH(I).EQ.0)GO TO 3
IF(NPREV .LT.OPERH(1))40,1
40 NPREV=OPERH(I)
K=l
GO TO 30
42 IF(NPREV.EQ.—1)71,41
41 KK=K
LSUM=RSUM=0
31 LSUM=LSUM+-LPC(K—1)
RSUM=RSUM--RPC(K)
IF(LSUM.EQ.RSUM)GO TO 35
K=K—1
GO TO 31
35 LPC(K—1)=LPC(K—1)+1
K=KK
LSUM=RSUM=0
32 LSUM=LSUM+LPC(K)
RSUM=RSUM-+RPC(K-+1)
IF(LSUM.EQ.RSUM)GO TO 36
K=K+1
GO TO 32
36 RPC(K+1)=RPC(K+1)+1
OPERH(KK)=0
I=1
NPREV=—1
GO TO 30
71 K=0
KK=1
72 K=K+1
IF(KK.GT.N1)GO TO 80
I=RPC(KK)
IF(1.LEQ.0)GO TO 73
DO 74 L=1,1
INB(K)=1R)
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74
73

76

75

78

80

999

K=K-1
INB(K)=OPER(KK)
K=K+1

I=LPC(KK)

IF(1.EQ.0)GO TO 75
DO 76 L=1,l
INB(K)=1R(

K=K-+1
IF(KK.EQ.N1)GO TO 80
IF(OPAND(KK).EQ.0)GO TO 78
INB(K)=OPAND|(KK)
KK=KK+1

GO TO 72

K=K—1

KK=KK+1

GO TO 72

K=K—1

PRINT 100, (INB(1),I=1,K)
GO TO 1

CONTINUE

END

SOLUTIONS TO SELECTED PROBLEMS

Note: Due to the limited character set of FORTRAN a $ sign was used in
place of 1.

RESULTS:

X=A—B/C—D—E$F
(X=(({(A—(B/C))—D)—(E$F))

A=B-+}C
(A=(B+C))

A=—B$C
(A=(—(B$C))

X=A$B+C$D—A/B*C$E

(X=(((A$B)+(C$D))—((A/B)*(C$E)))
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Y=—X—M-+A*B/C*N/M*P$E
(Y=({(—X)—M)+(((((A*B)/C) *N)/M)*(P$E))))

J—(B—E)))
+++4+++++ UNMATCHED PARENTHESES 444+

X=—A$B+C+R*T/A$B+CSN+-C
(X=(((((—(A$B))+C)+((R*T)/(A$B)))+(C$N))+C))

X=—(—A+B—(—A))
(X=(=(((—=A)+B)—(—=A))

A=X$(C—D)

(A=(X$(C—D)))
M=—C*G-+C—N/C$B*(—K)
(M=(((—(C*G))+C)—((N/(C$B))*(—K))))

Chapter 8
Problem 8.1(e)
Reduced String Generated Instructions
n=~atb/~ar b -
0 i 5 4 315 24 ¢
t7
C H
LDA
RvsG ¢
-n=ACCtb/~a?tb-
0 1 4 315 24 0
T 1
C H
EXP b
ST ol
-n=+/~a?thb
0 1 315 24 O
T 1
C H
LDA a
EXP b
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Reduced String

= n =1/~ ACC -
0 1 315 0
1 T
C H

]—n=n/ACC-—|
3 0

0 1
1 0
C H
- n = ACC -
0 1 0
) 1
C H

Problem 8.2(a)

~a/~b+ ~c-
03 1423 1223 0

i\ t
C H

~a/ ACC + ~ ¢ -

03 14 1223 0
1 T
C H

= ~7 4+ ~c-
03 1223 €

C H

SOLUTIONS TO SELECTED PROBLEMS

Generated Instructions

RVSG

RDIV T1

ST n

LDA b

(RVSG held in reserve)
RDIV a

(RVSG still in reserve)

After the pointers are moved, it is found
that the RVSG code must be added to the
output since the in-hand operator does
not become the next operator to take part
in the compilation and thus the contents
of the accumulator must be stored.

RVSG

ST -

LDA c

(RVSG in reserve)
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Reduced String Generated Instructions
-~ + ACC -
0 3 12 0
1 T
C H
Normally, at this pont, an ADD would be
generated, but the RVSG in hand converts
this to SUB with an RVSG still in reserve.
SUB T1
|- ~ ACC -
03 0
i T
C H
At this point, an RVSG should be generated
which will cancel along with that in hand.
The compilation is complete.
Problem 8.3(b)
TEA TEO Level In Hand Generated Instructions
x = 0
a = 1
b ~ 3
— 12 + LDA b
SUB a
(RVSG in reserve)
X — 0
ACC = 1
3 + (RVSG generated cancels with that
in reserve)
x - 0
T1 = 1 ST T1
c + 2
d — 12 - LDA d
SuB c
(RVSG in reserve)
x |- 0
T1 == 1
ACC + 2 - (ADD converts to SUB, with RVSG
in reserve)
SUB T
x — 0
ACC = 1 - (RVSG is forced out by =)

RVSG
ST X
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SOLUTIONS TO SELECTED PROBLEMS

Problem 8.4

100

19
20

101

44

PROGRAM ASCAN

DIMENSION TEA(10),TEO(10)
DIMENSION LEVEL(10),11(2,10)
DIMENSION OP(9),A(9)
DATA(II(1,1)=1H ,0),

1 (1{1,2)=1H+,2),

2 (I(1,3)=1H—,2),

3 ((1,4)=1Hx,3),
4 (I(1,5=1H/,3),

5 (II(1,6)=1HE5)
DATA(LEVEL(1)=0)

INTEGER TEO,OP

READ 100,(OP(M),A(M),M=1,8),0P(9)
FORMAT(8(A1,F8.3),A1)
IF(EOF,60)19,20

STOP

I=1$K=1

J=2%L=2

CHECK FIRST COLUMN FOR UNARY
IF(OP(1).EQ.TH )GO TO 2

IF PLUS IGNORE
IF(OP(1).EQ.1H+)GO TO 2
MUST BE —
IF(OP(1).NE.1H—)3,44

PRINT 101

FORMAT(* INVALID UNARY OPx)
GO TO 1

PUT UNARY IN TEO
TEO(J)=OP(1)

LEVEL(J)=4

7 J=J+1

14
102

TEA(l)=A(K)$1=I+1$K=K+1

'FIND LEVEL OF NEXT OP

DO 4 M=1,6

IF(I1(1,M).EQ.OP(L))GO TO 5

CONTINUE

HAVE SEARCHED WHOLE TABLE = INVALID OPERATOR
PRINT 102

FORMAT(* INVALID OP%)

GO TO 1

INHAND=II(2,M)
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C IF LEVEL OF IN HAND LE LAST OP COMPILE
15 IF(INHAND.LE.LEVEL(J—1))GO TO 6
C STORE OPERAND AND OPERATOR IN TABLES
TEO(J)=II{1,M)
LEVEL(J)=11{2,M)
L=L+41
GO TO 7
C FORCE CALCULATION
6 IF(LEVEL(J—1).EQ.0)GO TO 16
IF(LEVEL(J—1).EQ.4)GO TO 8
IF(TEO(J—1).EQ.TH4)GO TO 9
IF(TEO(J—1).EQ.1H—)GO TO 10
IF(TEO(J—1).EQ.TH*)GO TO 11
IF(TEO(J—1).EQ.1H/)GO TO 12
IF(TEO(J—1).EQ.THE)GO TO 13
GO TO 14
8 TEA(l—1)=—TEA(I—1)
17 J=J—1
GO TO 15
9 TEA(I—2)=TEA(I—2)4-TEA(I—1)
18 I=1—1$GO TO 17
10 TEA (I—2)=TEA(I—2)—TEA(I—1)
GO TO 18
11 TEA(I—2)=TEA(I—2)*TEA(I—1)
GO TO 18
12 TEA(I—2)=TEA(I—2)/TEA(I—1)
GO TO 18
13 TEA(I—2)=TEA(l—2)**TEA(I=T)
GO TO 18
C OUTPUT ORIGINAL EXPRESSION AND RESULT
16 PRINT 103,(OP(N),A(N),N=1,8),TEA(I—1)
103 FORMAT(///,1X,8(A1,F8.3),1H=,E16,8)
GO TO 1
END
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SOLUTIONS TO SELECTED PROBLEMS

£00+00666ST0'T—

000-+00000000'8

000+€696€L9V°C

000-+00000000°0

000-+00000000t

=0000—

=000"0—

=0000—

=0000—

=0000—

000°0—

000°0—

000°0—

000°0—

000°0—

666666

000°0—

000°0—

000°0—

000°0—

—000°¢

000°0—

000°0—

000°0—

0000—

d000°¢C

000°0—

000°0—

000°0—

000°0—

*000°¢

000°0—

000V

000°0—

000°0—

—000°¢

000°¢

/TP1E

000°'C

000°'C

d000°C

g000°¢

*Crl'e

+000°C

+000'C
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APPENDIX E

A Summary of the Instructions in the
Target Language

Each statement in this hypothetical target language has the format:
LABEL OPCODE ADDRESS,INDEX COMMENTS

where the OPCODE must always be present to define an instruction. When the
OPCODE is absent, the assembled word contains the address (or value) portion
of the statement only, the OPCODE portion of the assembled word being blank.
In this case no index register parameter is permitted. When the OPCODE is
defined as a numeric value rather than a symbolic code, that value (converted
to the appropriate internal representation) is stored in the OPCODE portion of
the assembled word.

An address that is given a negative value in the assembly statement is to be
considered an indirect address. If an indirect address is included in a statement
together with an influencing index register (the INDEX portion of the statement),
the contents of the register are to be added to the address prior to executing the
indirect functions. For example, if the word contains the indirect address 13753
and is influenced by the register 3, which contains the value 00217, then the
address is to be extracted from the word at location 14070. If this word contains
the address 00279, then this is the address that is to be used in conjunction with
the OPCODE in the original instruction. That is, if the instruction

LDA — 13753,3
were to be executed under the above conditions, it would act effectively as
LDA 00279

This hypothetical machine is assumed to be capable of more than one level
of indirect addressing and to contain an infinite number of index registers. In
the assembly code statements, indices may not be defined as variables. For the
purposes of minimizing the number of labels in each program, a reference to a
word may be defined relative to the word containing the instruction being exe-
cuted. This is achieved by the notation * which symbolizes the address of that
instruction. Thus the address *+2 indicates the address of the word two positions
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A SUMMARY OF THE INSTRUCTIONS IN THE TARGET LANGUAGE

toward higher memory from the current address. Similarly, literal addresses (or
values) may be defined by preceding the address (or value) by an equal sign.
In the context of the program portions described herein, this is used to indicate
a value as opposed to an address.

For the purposes of this text, the hypothetical machine contains only one ac-
cumulator (given the mnemonic name ACC) though an extension to the accumu-
lator would be needed, in fact, for the storage of the double length result of a
multiplication or to store the dividend of a division. However, these features are
not essential to the theoretical context of compilation.

The Assembly Code Instructions

In this description the label portion of the statements are omitted since such
labels are common to all statements and do not influence the execution of the
instructions or the assembly of the definitions. For the purposes of definition the
following nomenclature will be utilized:

C(a) The contents of the word at address a.
V(a) The value of the address portion of the instruction.
IR; Index register i.

In the above definitions, the address portions are assumed to be evaluated after
being effected by the index register contents and any indirect addressing.

OPCODE ADDRESS, INDEX ACTION

LDA a,i C(a) — ACC

ST a,i ' C(ACC) > a

ENA a,i V(a) — ACC

INA a,i C(ACC) + V(a) — ACC
ADD a,i C(ACC) + C(a) — ACC
SUB a,i C(ACC) — C(a) — ACC
RSUB a,i C(a) — C(ACC) — ACC
MUL a,i C(ACC) * C(a) — ACC
DIV a,i C(ACC) / C(a) — ACC
RDIV a,i C(a) / C(ACC) — ACC
RVSG —C(ACC) — ACC

The address portion of this instruction is not
used, but may be used for other purposes
such as the storage of an address which will
take part in an indirect addressing scheme.
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EXP ai C(ACC) 1 C(a) — ACC
REXP ai C(a) 1 C(ACC) — ACC
LIR a,i- C(a) = IR;

Note that in this case, the index portion of
the instruction does not influence the address
but merely defines the destination of the con-
tents of that address. However, indirect ad-
dressing will be permitted.

NOP No operation. The address portion of this
instruction is not used.

In order to define the remaining instructions, we shall define an internal register
of the computer and label it PC (Program Counter). This register always con-
tains the address of the next instruction to be executed. In circumstances where
the instructions are to be executed sequentially, this counter is automatically
set to the next sequential instruction. In the following instructions the counter
will be set to the next sequential instruction unless it is altered within the in-
struction being executed.

B a,i V(a) - PC

BZ a,i If C(ACC) =0, V(a) — PC
BNZ a,i If C(ACC) +0,V(a) - PC
BP a,i If C(ACC) > 0,V(a) - PC
BN a,i If C(ACC) < 0,V(a) - PC
IJMS a PC—a,V(a) +1 - PC

Note that this instruction has no index por-
tion.

The following two instructions will utilize another internal register which is used
to store an address. This will be given the symbol PC1.

MPT a,i PC— PC1,V(a) - PC
BB PCl - PC

The address portion of this instruction is not
used.
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A SUMMARY OF THE INSTRUCTIONS IN THE TARGET lANGUAGE

This assembly code contains only one definition (declarative) statement al-
though words may be defined with a blank OPCODE by merely leaving that por-
tion of the assembly statement blank. The statement:

DA a

assembles to a word containing the value defined in the address portion of the
statement. This value may be defined either as a litzral or symbolically by the
use of a label. In either case, the value will be right justified in the word that is
equivalent to the address portion of an assembled instruction. However, the value
may fill the entire word, overlapping into the OP{.ODE portion.
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